\(M=5+5^2+5^3+...+5^{100}\)

b) Chứng tỏ : \(N=5^1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

a, \(M=5+5^2+5^3+...+5^{100}\)

\(\Rightarrow5M=5^2+5^3+5^4+...+5^{101}\)

\(\Rightarrow5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+....+5^{100}\right)\)

\(\Rightarrow4M=5^{101}-5\)

\(\Rightarrow M=\frac{5^{101}-5}{4}\)

Vậy : \(M=\frac{5^{101}-5}{4}\)

2 tháng 10 2016

bằng ?

 

2 tháng 10 2016

a) \(M=5+5^2+5^3+...+5^{100}\)

=> \(5M=\left(5+5^2+5^3+...+5^{100}\right).5\)

            = \(5^2+5^3+5^4+...+5^{101}\)

=> \(5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)

=> \(4M=5^{101}-5\)

=> \(M=\frac{5^{101}-5}{4}\)

 

14 tháng 10 2017

\(A=5+5^2+5^3+5^4+........+5^{2010}\)

A = ( 1 + 5 + 52 ) + ............ + ( 52008 + 52009 + 52010 )

A = 31 + ......... + 31( 1 + 5 + 5)

Mà 31\(⋮\)31 => A \(⋮\)31 ( đpcm )

14 tháng 10 2017

đề bài sai rồi

2 tháng 10 2016

Ta có :

\(N=5+5^2+5^3+....+5^{2010}\)

\(\Rightarrow N=5\left(1+5+5^2\right)+.....+5^{2008}\left(1+5+5^2\right)\)

\(\Rightarrow N=5.31+....+2^{2008}.31\)

=> N chia hết cho 31

2 tháng 10 2016

\(N=5^1+5^2+5^3+5^4+...+5^{2010}\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2018}\left(1+5+5^2\right)\)

\(=31\left(5+5^4+...+5^{2018}\right)⋮31\)

=>đpcm

3 tháng 11 2017

a/ \(1+5+5^2+..........+5^{501}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)

\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)

\(=1.6+5^2.6+.............+5^{500}.6\)

\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)

b/ \(2+2^2+2^3+............+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+..........+2^{96}.31\)

\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)

3 tháng 11 2017

a)1+5+5^2+5^3+........+5^501

= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)

=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)

=6+150(5^2+5^3+.......+5^500)

mà 6 chia hết cho 6

150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6

=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6

=> 1+5+5^2+5^3+........+5^501 chia hết cho 6

2 tháng 5 2017

2/

S = 2 + 22 + 23 +...+ 299

= (2+22+23) +...+ (297+298+299)

= 2(1+2+22)+...+297(1+2+22)

= 2.7 +...+ 297.7

= 7(2+...+297) chia hết cho 7

S = 2+22+23+...+299

= (2+22+23+24+25)+...+(295+296+297+298+299)

= 2(1+2+22+23+24)+...+295(1+2+22+23+24)

= 2.31+...+295.31

= 31(2+...+295) chia hết cho 31

3/

A = 1+5+52+....+5100 (1)

5A = 5+52+53+...+5101 (2)

Lấy (2) - (1) ta được

4A = 5101 - 1

A = \(\frac{5^{101}-1}{4}\)

2 tháng 5 2017

4/

Đặt A là tên của biểu thức trên

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy...

5/

a, Gọi UCLN(n+1,2n+3) = d

Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d

           2n+3 chia hết cho d

=> 2n+2 - (2n+3) chia hết cho d

=> -1 chia hết cho d => d = {-1;1}

Vậy...

b, Gọi UCLN(2n+3,4n+8) = d

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d 

=> 4n+6 - (4n+8) chia hết cho d

=> -2 chia hết cho d => d = {1;-1;2;-2}

Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}

Vậy...

16 tháng 10 2020

Ta có 1 + 5 + 52 + 53 + ... + 520 + 521 (22 hạng tử)

= (1 + 5) + (52 + 53) + ... + (520 + 521) (11 cặp số)

= (1 + 5) + 52(1 + 5) + ... + 520(1 + 5)

= 6 + 52.6 + ... + 520.6

= 6(1 + 52 + ... + 520\(⋮\)6 (đpcm)

16 tháng 10 2020

1 + 5 + 52 + 53 + ... + 520 + 521

= ( 1 + 5 ) + ( 52 + 53 ) + ... + ( 520 + 521 )

= 6 + 52( 1 + 5 ) + ... + 520( 1 + 5 )

= 1.6 + 52.6 + ... + 520.6

= 6( 1 + 52 + ... + 520 ) chia hết cho 6 ( đpcm )

26 tháng 6 2017

Nhanh nha mai nộp rùi