\(-\)5x2+8x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

viết sai rồi kìahiha!!!!

a)x\(^3\)-5x\(^2\)+8x-4=x\(^3\)-4x\(^2\)+4x-x\(^2\)+4x-4

=x(x\(^2\)-4x+4)-\(\left(x^2-4x+4\right)\)

= (x-1) (x-2)\(^2\)

b)Xét \(\dfrac{A}{B}=\dfrac{10x^2-7x-5}{2x-3}=5x+4+\dfrac{7}{2x-3}\)

Với x \(\in\) Z thì A chia hết chi B khi \(\dfrac{7}{2x-3}\in Z\)\(\Rightarrow\)\(7⋮\left(2x-3\right)\)

Mà Ư\(_{\left(7\right)}\)=\(\left\{-1,1,7,-7\right\}\)\(\Rightarrow\)x=5,-2,2,1thì Achia hết cho B

c)Mik ko bt lm

hihahihahihahihahiha

11 tháng 10 2018

cảm ơn nhiều!!!!!!!!!!

30 tháng 1 2019

a) \(x^3-5x^2+8x-4\)

\(=x^3-2x^2-3x^2+6x+2x-4\)

\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-3x+2\right)\)

\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)

\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)

\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)

30 tháng 1 2019

b) \(A=10x^2-15x+8x-12+7\)

\(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\)

\(A=\left(2x-3\right)\left(5x+4\right)+7\)

Dễ thấy \(\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)=B\)

Vậy để \(A⋮B\)thì \(7⋮\left(2x-3\right)\)

\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{2;1;5;-2\right\}\)

Vậy.......

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

a)\(\dfrac{3}{x^2+5x+4}+\dfrac{2}{x^2+10x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+3x-18}\left(đkxđ:x\ne-1;-4;-6;3\right)\)

\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{\left(x+6\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{4}{3}+\dfrac{1}{x-3}-\dfrac{1}{x+6}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{4}{3}+\dfrac{1}{x-3}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\)

\(\Leftrightarrow\dfrac{-4}{\left(x+1\right)\left(x-3\right)}=\dfrac{4}{3}\)

\(\Leftrightarrow\left(x+1\right)\left(3-x\right)=3\)

\(\Leftrightarrow2x-x^2+3=3\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\left(tm\right)\)

b)\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-y^2-4y-4-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Mà x,yEN*=>x-y-1<x+y+3

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy ...

Bài 1: Thực hiện phép tính a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\) b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\) c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\) d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\) e,...
Đọc tiếp

Bài 1: Thực hiện phép tính

a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)

b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)

c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)

d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)

e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)

f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)

g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)

h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)

Bài 2: Rút gọn các phân thức:

a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)

b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)

d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)

e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)

Bài 3: Rút gọn rồi tính giá trị các biểu thức:

a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6

b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)

c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10

Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:

a, \(\dfrac{x^3-x^2+2}{x-1}\)

b, \(\dfrac{x^3-2x^2+4}{x-2}\)

c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)

e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)

2
8 tháng 12 2017

Giúp mình nhé mọi người ! leuleu

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=x-1\)

\(b.\)

\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2y}{\left(x-y\right)}\)

Tương tự các câu còn lại

8 tháng 8 2017

b) \(\dfrac{3}{4}xy+\dfrac{3}{4}x^2y-\dfrac{3}{4}xy^2\Leftrightarrow\dfrac{3}{4}xy+\dfrac{3}{4}xy\left(x-y\right)\Leftrightarrow\dfrac{3}{4}xy\left(x-y+1\right)\)

c) \(x\left(x-2\right)+y\left(2-x\right)\Leftrightarrow x\left(x-2\right)-y\left(x-2\right)=\left(x-y\right)\left(x-2\right)\)

d) \(x\left(3-2x\right)+6-4x\Leftrightarrow x\left(3-2x\right)+2\left(3-2x\right)\Leftrightarrow\left(x+2\right)\left(3-2x\right)\)

8 tháng 8 2017

Nên thay dấu \(\Leftrightarrow\) thành dấu =

6 tháng 9 2017

Hằng đẳng thức mà tương ạ! :v

a, \(\dfrac{8x^3-\dfrac{1}{125}y^3}{4x^2+\dfrac{1}{25}y^2+\dfrac{2}{5}xy}\)

\(=\dfrac{\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)}{4x^2+\dfrac{1}{25}y^2+\dfrac{2}{5}xy}=2x-\dfrac{1}{5}y\)

b, \(\dfrac{x^3-6x^2+2x+15}{x-5}\)

\(=\dfrac{x^3-5x^2-x^2+5x-3x+15}{x-5}\)

\(=\dfrac{x^2\left(x-5\right)-x\left(x-5\right)-3\left(x-5\right)}{x-5}\)

\(=\dfrac{\left(x-5\right)\left(x^2-x-3\right)}{\left(x-5\right)}=x^2-x-3\)

Rồi ạ :v!

6 tháng 9 2017
  • avt98655_60by60.jpgToshiro Kiyoshi14GP
  • avt98668_60by60.jpgNguyễn Thị Hồng Nhung13GP
  • avt60727_60by60.jpgNguyễn Đình Dũng12GP
  • avt72611_60by60.jpgNguyễn Thanh Hằng11GP
  • avt51277_60by60.jpgTrần Thiên Kim4GP
  • avt23379_60by60.jpgAce Legona4GP
  • photo.jpg?sz=60Sonboygaming Tran4GP
  • avt210131_60by60.jpgRồng Đỏ Bảo Lửa4GP
  • avt121188_60by60.jpgÁnh Dương Hoàng Vũ4GP
  • avt116105_60by60.jpgDƯƠNG PHAN KHÁNH DƯƠNG4GP
21 tháng 1 2018

Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick

29 tháng 1 2019

a) \(\left(6x^3y^2-4x^2y^3-10x^2y^2\right):2xy\)

=\(\left(6x^3y^2:2xy\right)-\left(4x^2y^3:2xy\right)-\left(10x^2y^2:2xy\right)\)

\(=3x^2y-2xy^2-5xy\)

b) \(\dfrac{2y}{x-2}+\dfrac{5y}{x-2}\)

=\(\dfrac{2y+5y}{x-2}\)

=\(\dfrac{7y}{x-2}\)

c)\(\dfrac{xy}{3x-y}+\dfrac{3x^2}{y-3x}\)

\(=\dfrac{xy}{3x-y}-\dfrac{3x^2}{3x-y}\)

=\(\dfrac{x\left(y-3x\right)}{3x-y}\)

=\(\dfrac{-x\left(3x-y\right)}{3x-y}\)

=-x

d)\(\dfrac{x-1}{6x+12}.\dfrac{x+2}{x-1}\)

=\(\dfrac{\left(x-1\right)\left(x+2\right)}{6\left(x+2\right)\left(x-1\right)}\)

=\(\dfrac{1}{6}\)