Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
Bài 1:
a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)
b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]
= 2xy.(x-y-1).(x+y+1)
c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2
= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)
Bài 2:
a) (x+2).(x^2-2x+4) - (x^3+2x) = 0
x^3 + 8 - x^3 - 2x = 0
8 - 2x = 0
x = 4
b) x^2 - 2x - 8 = 0
x^2 +2x - 4x - 8 = 0
x.(x+2) - 4.(x+2) = 0
(x+2).(x-4) = 0
...
bn tự làm tiếp nha
Bài 1
1) 4x - x2 - 4 = 0
⇔ -( x2 - 4x + 4 ) = 0
⇔ -( x - 2 )2 = 0
⇔ x - 2 = 0
⇔ x = 2
2) 4( x - 1 )2 - ( 5 - 2x )2 = 0
⇔ 22( x - 1 )2 - ( 5 - 2x )2 = 0
⇔ ( 2x - 2 )2 - ( 5 - 2x ) = 0
⇔ ( 2x - 2 - 5 + 2x )( 2x - 2 + 5 - 2x ) = 0
⇔ ( 4x - 7 ).3 = 0
⇔ 4x - 7 = 0
⇔ x = 7/4
3) 9( x - 2 )2 - 4( 3 - x )2 = 0
⇔ 32( x - 2 )2 - 22( x - 3 )2 = 0
⇔ ( 3x - 6 )2 - ( 2x - 6 )2 = 0
⇔ ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 ) = 0
⇔ x( 5x - 12 ) = 0
⇔ x = 0 hoặc 5x - 12 = 0
⇔ x = 0 hoặc x = 12/5
4) x2 - 6x + 5 = 0
⇔ x2 - 5x - x + 5 = 0
⇔ x( x - 5 ) - ( x - 5 ) = 0
⇔ ( x - 5 )( x - 1 ) = 0
⇔ x - 5 = 0 hoặc x - 1 = 0
⇔ x = 5 hoặc x = 1
Bài 2.
1) x2 - z2 + y2 - 2xy
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
2) a3 - ay - a2x + xy
= ( a3 - a2x ) - ( ay - xy )
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
3) 2xy + 3z + 6y + xz
= ( 2xy + 6y ) + ( xz + 3z )
= 2y( x + 3 ) + z( x + 3 )
= ( x + 3 )( 2y + z )
4) x2 + 2xz + 2xy + 4yz
= ( x2 + 2xy ) + ( 2xz + 4yz )
= x( x + 2y ) + 2z( x + 2y )
= ( x + 2y )( x + 2z )
5) ( x + y + z )3 - x3 - y3 - z3
= x3 + y3 + z3 + 3( x + y )( y + z )( x + z ) - x3 - y3 - z3
= 3( x + y )( y + z )( x + z )
g: \(=x^4+12x^2+36-25x^2\)
\(=\left(x^2+6\right)^2-25x^2\)
\(=\left(x^2+5x+6\right)\left(x^2-5x+6\right)\)
\(=\left(x-2\right)\left(x-3\right)\left(x+2\right)\left(x+3\right)\)
i: \(x^4+3x^2-2x+3\)
\(=x^4-x^3+x^2+x^3-x^2+x+3x^2-3x+3\)
\(=\left(x^2-x+1\right)\left(x^2+x+3\right)\)
a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)
b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)
e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)
f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)
a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)
\(=x^2+2xy+y^2-x^2+y^2\)
\(=2y^2+2xy\)
\(=2y\left(x+y\right)\)
c) \(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-x^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)
d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)
\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)
\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)
\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)
\(=\left(4x^2-1\right)\left(y^2-1\right)\)
\(x^2+y^2+z^2+2xy+2yz+2xz-\left(9y^2-12yz+4z^2\right)\)
\(=\left(x+y+z\right)^2-\left(3y-2z\right)^2\)
\(=\left(x+y+z-3y+2z\right)\left(x+y+z+3y-2z\right)\)
\(=\left(x-2y+3z\right)\left(x+4y-z\right)\)
\(x^3-8+x^2-2x=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^2+x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\end{matrix}\right.\)
Ko cần "GP", cảm ơn