Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 401 người nhận rồi
OKz
1. = [(x^2-2xy+y^2)+2.(x-y).2+4] - 9
= (x-y+2)^2-9
= (x-y+2-3).(x-y+2+3) = (x-y-1).(x-y+5)
2. Có : n^3+n+2 = (n^3+1)+(n+1) = (n+1).(n^2-n+1+1) = (n+1).(n^2-n+2)
Nếu n lẻ => n+1 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 => n^3+n+2 là hợp sô
Nếu n chẵn thì n^2 chia hết cho 2 => n^2-n+2 chia hết cho 2 => n^3+n+2 chia hết cho 2
Mà n^3+n+2 > 2 = >n^3+n+2 là hợp số
Tk mk nha
Bài 1 :
a, Ta có : \(\left(x+3\right)^3=x\left(x-4\right)\)
=> \(x^3+9x^2+27x+27=x^2-4x\)
=> \(x^3+9x^2+27x+27-x^2+4x=0\)
=> \(x^3+8x^2+31x+27=0\)
=> \(x\approx-1,27\)
Vậy phương trình có tập nghiệm là \(S=\left\{~-1.27\right\}\)
b, Ta có : \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)
=> \(\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{4}{3}\)
=> \(x=1\)
Vậy phương trình có tập nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{6\left(x-3\right)}{30}=\frac{180}{30}-\frac{10\left(1-2x\right)}{30}\)
=> \(6\left(x-3\right)=180-10\left(1-2x\right)\)
=> \(6x-18=180-10+20x\)
=> \(-14x=188\)
=> \(x=-\frac{94}{7}\)
Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{94}{7}\right\}\)
Bài 2 :
a, Ta có : \(x^2+4x-2xy-4y+y^2\)
= \(\left(x-y\right)^2+4\left(x-y\right)\)
= \(\left(x-y\right)\left(x-y+4\right)\)
b, Ta có : \(x\left(x-4\right)+\left(x-4\right)\left(2x+3\right)\)
\(=\left(x-4\right)\left(x+2x+3\right)\)
= \(=\left(x-4\right)\left(3x+3\right)\)
c, Ta có : \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
= \(\left(x-1-y\right)\left(x-1+y\right)\)
Bài 1:
\(=a^8+2a^4+1-a^4\)
\(=\left(a^4+1\right)^2-a^4\)
\(=\left(a^4-a^2+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a^4-a^2+1\right)\left(a^4+2a^2+1-a^2\right)\)
\(=\left(a^4-a^2+1\right)\left(a^2+1-a\right)\left(a^2+1+a\right)\)
a)\(x^2+4x-4y^2-8y\)
\(=x^2+2xy+4x-2xy-4y^2-8y\)
\(=x\left(x+2y+4\right)-2y\left(x+2y+4\right)\)
\(=\left(x-2y\right)\left(x+2y+4\right)\)
b)sai đề
c)sai đề tiếp
a)x2+4x-4y2-8y=(x2-4y2)+(4x-8y)
=(x+2y(x-2y)+4(x-2y)
=(x-2y)(x+2y+4)
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3
Bài 8:
b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3
= (1+2x2y)(1-2x2y+4x4y2)
e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))
Bài 9:
c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3
= (1-3x)3
d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)
= (x+\(\dfrac{1}{2}\))3
f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)
= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)
Để (2^n-1);7 thì nó phải thuộc U(7) =1:-1;7;-7
2^n-1 | 1 | -1 | 7 | -7 |
n | X | X | 3 | X |
Vậy n=3 thì (2^n-1);7
a, x^3 + y^3 + z^3 = (x+y)^3 - 3xy(x+y) + z^3
= (x+y+z)[(x+y)^2 - (x+y)z + z^2] - 3xy(x+y)
= -3xy(x+y) (do x+y+z=0)
Vì x+y+z=0 =>x+y=-z
=> -3xy(x+y)=3xyz
Bài này có nhiều cách giải bạn cũng có thể dựa vào x+y+z=0 => x=-(y+z),....... rồi thay vào
Và sau này khi giải các bài toán thì bạn có thể AD: Nếu x+y+z=0 thì x^3 +y^3+z^3=3xyz
\(x^2-2xy+y^2+4x-4y-5\)
\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)
\(=\left(x-y+2\right)^2-9\)
\(=\left(x-y+2+3\right)\left(x-y+2-3\right)\)
\(=\left(x-y+5\right)\left(x-y-1\right)\)
a, = (x^2-2xy+y^2)+(4x-4y)-5
= (x-y)^2+4.(x-y)-5
= [(x-y)^2+4.(x-y)+4]-9
= (x-y+2)^2-9
= (x-y+2-3).(x-y+2+3)
= (x-y-1).(x-y+5)
b, Xét : A = n^3+n+2 = (n^3+n)+2 = n.(n^2+1)+2
Nếu n chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2
Nếu n lẻ => n^2 lẻ => n^2+1 chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2
Vậy A chia hết cho 2 với mọi n thuộc N sao
Mà n thuộc N sao nên n.(n^2+1)+2 > 2
=> A là hợp số hay n^3+n+2 là hợp số
=> ĐPCM
Tk mk nha