Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 11 chia hết cho 5 + n
n + 5 + 6 chia hết cho 5 + n
5 + n thuộc U(6) = {-6;-3;-2;-1;1;2;3;6}
Mà n là số TN
Vậy n = 1
Tương tự
a, Ta có:
\(\dfrac{4n-11}{4n-8}\)=\(\dfrac{4n-8-3}{4n-8}=\dfrac{4n-8}{4n-8}+\dfrac{-3}{4n-8}=1+\dfrac{-3}{4n-8}\)
\(\Rightarrow\)-3 \(⋮\) 4n - 8
\(\Rightarrow\)4n-8 \(\in\) Ư (-3) ={\(\pm\)1; \(\pm\)3}
Ta có bảng sau:
4n-8 | -1 | 1 | -3 | 3 |
n | \(\dfrac{7}{4}\) | \(\dfrac{9}{4}\) | \(\dfrac{5}{4}\) | \(\dfrac{11}{4}\) |
Vậy x \(\in\){ \(\varnothing\) }
b, Ta có:
2n + 1 \(⋮\) n + 1
\(\Rightarrow\) 2.(n+1) \(⋮\) n+1
\(\Rightarrow\)2 \(⋮\) n+1
\(\Rightarrow\) n+1 \(\in\) Ư (2) = { -1 ; -2; 1; 2 }
Ta có các trường hợp sau:
n + 1 = -1 \(\Rightarrow\) n= -2
n + 1 = -2 \(\Rightarrow\) n= -3
n + 1 = 1 \(\Rightarrow\) n= 0
n + 1 = 2 \(\Rightarrow\) n= 1
Vậy n \(\in\) { -2;-3;0;1 }
a) \(\left(n+2\right)⋮\left(n-1\right)\Rightarrow\left[\left(n-1\right)+3\right]⋮\left(n-1\right)\Rightarrow3⋮\left(n-1\right)\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Suy ra \(n\in\left\{-2;0;2;4\right\}\)
Thử lại thỏa mãn.
b) \(\left(4n+5\right)⋮\left(2n+1\right)\Rightarrow\left[2\left(2n+1\right)+3\right]⋮\left(2n+1\right)\Rightarrow3⋮\left(2n+1\right)\Rightarrow\left(2n+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Suy ra \(n\in\left\{-2;-1;0;1\right\}\)
Thử lại thỏa mãn.