Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-\frac{3}{5^2}=\frac{1}{1.2}+\frac{1}{2.7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}+\frac{1}{19.11}+\frac{1}{11.25}\)
\(a^2-\frac{3}{5^2}=2.\left(\frac{1}{2.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}+\frac{1}{19.22}+\frac{1}{22.25}\right)\)
\(a^2-\frac{3}{5^2}=2.\frac{1}{3}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{22}-\frac{1}{25}\right)\)
\(a^2-\frac{3}{5^2}=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{25}\right)\)
=> \(a^2-\frac{3}{25}=\frac{2}{3}.\frac{23}{50}=\frac{23}{75}\)
=> \(a^2=\frac{23}{75}+\frac{3}{25}=\frac{32}{75}\)
=> \(a=\sqrt{\frac{32}{75}}\)(Nếu thế thì đây phải là đề của lớp 7 chứ nhỉ)
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
1) Từ 1 đến 100 có tất cả 100 số số hạng
=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)
=> A=5050
2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng
=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)
=> B=250
3) làm tương tự
4) S=\(1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+....+2^{10}\)
\(2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1\)
5) làm tương tự
A=1+2+3+...+99+100
Số số hạng của dãyA là:
(100-1):1+1=100(số hạng)
Tổng của dãy A là :
(100+1).100:2=5050
B=1+3+5+...+97+99
Số số hạng của dãy B là:
(99-1):2+1=50 (số hạng)
Tổng của dãy B là:
(99+1).50:2=250
C=2+4+6+...+98+100
Số số hạng của dãy C là:
(100-2):2+1=50(số hạng)
Tổng của dãy C là:
(100+2).50:2=2550
S=1+2+22+23+...+29
2S= 2+22+23+...+29+210
2S-S=1-210
S=1-210
M=1+3+32+33+...+39
3M=3+32+33+...+39+310
3M-M=1-310
2M=1-310
M=(1-310):2
Giải:
\(A^2-\left(\dfrac{3}{5}\right)^2=\dfrac{1}{1.2}+\dfrac{1}{2.7}+\dfrac{1}{7.5}+\dfrac{1}{5.13}+\dfrac{1}{13.8}+\dfrac{1}{8.19}+\dfrac{1}{19.11}+\dfrac{1}{11.25}\)
Gọi: \(B=\dfrac{1}{1.2}+\dfrac{1}{2.7}+\dfrac{1}{7.5}+\dfrac{1}{5.13}+\dfrac{1}{13.8}+\dfrac{1}{8.19}+\dfrac{1}{19.11}+\dfrac{1}{11.25}\)
\(B=\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+\dfrac{1}{13.16}+\dfrac{1}{16.19}+\dfrac{1}{19.22}+\dfrac{1}{22.25}\right):\dfrac{1}{2}\) \(B=\left[\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{19.22}+\dfrac{3}{22.25}\right)\right]:\dfrac{1}{2}\)
\(B=\left[\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{25}\right)\right]:\dfrac{1}{2}\)
\(B=\left[\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{25}\right)\right]:\dfrac{1}{2}\)
\(B=\left[\dfrac{1}{3}.\dfrac{24}{25}\right]:\dfrac{1}{2}\)
\(B=\dfrac{8}{25}:\dfrac{1}{2}\)
\(B=\dfrac{16}{25}\)
\(\Rightarrow A^2-\left(\dfrac{3}{5}\right)^2=\dfrac{16}{25}\)
\(A^2=\dfrac{16}{25}+\dfrac{9}{25}\)
\(A^2=1\)
\(\Rightarrow A^2=1^2\) hoặc \(A^2=\left(-1\right)^2\)
\(A=1\) hoặc \(A=-1\)
Chúc bạn học tốt!