K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

Tìm m để các bất phương trình sau vô nghiệm, đề bài đây ạ

20 tháng 2 2020

a/ \(\Leftrightarrow\left(m^2-1\right)x< m^2-4m+3\)

\(\Leftrightarrow\left(m-1\right)\left(m+1\right)< m^2-4m+3\)

Để bpt vô nghiệm<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}m-1=0\\m^2-4m+3\ne0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1=0\\m^2-4m+3\ne0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m=1\\m\ne1\\m\ne3\end{matrix}\right.\\\left\{{}\begin{matrix}m=-1\\m\ne1\\m\ne3\end{matrix}\right.\end{matrix}\right.\Rightarrow m=-1\)

Mấy câu dưới tương tự, cứ nhóm tất cả hạng tử có nhân tử chung là x vào và làm y như trên

14 tháng 1 2016

điên à

 

8 tháng 5 2020

giúp mình 3 câu nữa đi

NV
7 tháng 5 2020

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)

a/ \(1\left(m+1\right)< 0\Rightarrow m< -1\)

b/ \(-3\left(4-m^2\right)< 0\Leftrightarrow m^2-4< 0\Rightarrow-2< m< 2\)

c/ \(\left(m-1\right)\left(m^2+4m-5\right)< 0\)

\(\Leftrightarrow\left(m-1\right)^2\left(m+5\right)< 0\Rightarrow m< -5\)

d/ \(\left(m+1\right)\left(m+1\right)< 0\Leftrightarrow\left(m+1\right)^2< 0\)

\(\Rightarrow\) Ko tồn tại m thỏa mãn

e/ \(2m\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow2m\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}-3< m< 0\\m>1\end{matrix}\right.\)

f/ \(4\left(2m^2-5m+2\right)< 0\Rightarrow\frac{1}{2}< m< 2\)

g/ \(\left(6-m\right)\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow\left(6-m\right)\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\1< m< 6\end{matrix}\right.\)

h/ \(m\left(2m-1\right)< 0\Rightarrow0< m< \frac{1}{2}\)

NV
22 tháng 2 2020

Để BPT nghiệm đúng với mọi x thì:

a/ \(\left\{{}\begin{matrix}2m^2-3m-2< 0\\\Delta'=\left(m-2\right)^2+2m^2-3m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2-3m-2< 0\\3m^2-7m+2\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{1}{2}< m< 2\\\frac{1}{3}\le m\le2\end{matrix}\right.\)

\(\Rightarrow\frac{1}{3}\le m< 2\)

b/ \(\left(m+4\right)x^2-2mx+2m-6< 0\)

\(\left\{{}\begin{matrix}m+4< 0\\\Delta'=m^2-\left(m+4\right)\left(2m-6\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\-m^2-2m+24< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\\left[{}\begin{matrix}m< -6\\m>4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -6\)

a: Ta có: \(\left(x+1\right)^2=0\)

=>x+1=0

hay x=-1

Thay x=-1 vào \(mx^2-\left(2m+1\right)x+m=0\), ta được:

m+2m+1+m=0

=>3m=-1

hay m=-1/3

b:x+2=0

nên x=-2

Thay x=-2 vào \(\dfrac{mx}{x+3}+3m-1=0\), ta được:

\(\dfrac{-2m}{-2+3}+3m-1=0\)

=>-2m+3m-1=0

=>m=1

d: 3x-2=0

=>x=2/3

Thay x=2/3 vào (m+3)x-m+4=0, ta được:

\(\dfrac{2}{3}\left(m+3\right)-m+4=0\)

\(\Leftrightarrow\dfrac{2}{3}m+2-m+4=0\)

=>6-1/3m=0

=>1/3m=6

hay m=18

28 tháng 10 2022

a: \(\text{Δ}=5^2-4\left(3m-1\right)=25-12m+4=-12m+29\)

Phương trình có hai nghiệm phân biệt khi -12m+29>0

=>-12m>-29

=>m<29/12

Để phương trình có nghiệm duy nhất thì -12m+29=0

=>m=29/12

Để phương trình vô nghiệm thì -12m+29<0

=>m>29/12

b: \(\text{Δ}=12^2-4\cdot2\cdot\left(-15m\right)=144+120m\)

Để phương trình có hai nghiệm pb thì 120m+144>0

=>m>-6/5

Để phương trình có nghiệm duy nhất thì 120m+144=0

=>m=-6/5

Để phương trình vô nghiệm thì 120m+144<0

=>m<-6/5

c: \(\text{Δ}=\left(2m-2\right)^2-4m^2=-8m+4\)

Để phương trình có hai nghiệm phân biệt thì -8m+4>0

=>-8m>-4

=>m<1/2

Để pt có nghiệm duy nhất thì -8m+4=0

=>m=1/2

Để pt vô nghiệm thì -8m+4<0

=>m>1/2