\(\left\{{}\begin{matrix}2x-y=5\\x^2+xy+y^2=7\end{matrix}\right.\)

b]

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

b, Ta có : \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y-4=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y=4\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y=x+2y\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y-x-2y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+x-7y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2+2xy+3y^2+1,5xy-4,5xy+x-7y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x\left(x+2y\right)+1,5y\left(x+2y\right)-4,5xy+x-7y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}4x+6y-4,5xy+x-7y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x-y-4,5xy=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5\left(4-2y\right)-y-4,5y\left(4-2y\right)=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}20-10y-y-18y+9y^2=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}20-29y+9y^2=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}9y^2-9y-20y+20=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left(9y-20\right)\left(y-1\right)=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=1\\y=\frac{20}{9}\end{matrix}\right.\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=1\\y=\frac{20}{9}\end{matrix}\right.\\\left[{}\begin{matrix}x=4-2.1=4-2=2\\x=4-\frac{2.20}{9}=-\frac{4}{9}\end{matrix}\right.\end{matrix}\right.\)

Vậy phương trình có 2 nghiệm ( x; y ) = \(\left(2;1\right)\), ( x; y ) = \(\left(-\frac{4}{9};\frac{20}{9}\right)\)

25 tháng 3 2020

a, Ta có : \(\left\{{}\begin{matrix}2x-y=5\\x^2+xy+y^2=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\x^2+x\left(2x-5\right)+\left(2x-5\right)^2=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\x^2+2x^2-5x+4x^2-20x+25=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\7x^2-25x+18=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\7x^2-7x-18x+18=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\\left(7x-18\right)\left(x-1\right)=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\\left[{}\begin{matrix}x=1\\x=\frac{18}{7}\end{matrix}\right.\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=2.1-5=2-5=-3\\y=2.\left(\frac{18}{7}\right)-5=\frac{1}{7}\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\x=\frac{18}{7}\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình trên có 2 nghiệm là ( x; y ) = ( 1; -3 ) , ( x; y ) \(=\left(\frac{18}{7};\frac{1}{7}\right)\)

27 tháng 9 2019

giups mình với mình đang cần gấp

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1

15 tháng 1 2020

3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1 \)

<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)

hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

24 tháng 6 2019

1,\(\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2-1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2+3-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\left(\sqrt{y^2+3}-2\right)\left(\sqrt{y^2+3}+3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1=0\\y^2=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)