Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
\(x^2+6x=2x-m+2\Leftrightarrow x^2+4x+m-2=0\) (1)
\(\Delta'=4-\left(m-2\right)=6-m>0\Rightarrow m< 6\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m-2\end{matrix}\right.\)
\(x_1^3+x_2^3\ge4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\ge4\)
\(\Leftrightarrow\left(-4\right)^3+12\left(m-2\right)\ge4\)
\(\Leftrightarrow12m\ge92\Rightarrow m\ge\frac{23}{3}\)
Vậy ko tồn tại m thỏa mãn?
Phương trình hoành độ giao điểm: \(x^2+3x-4=x-3m\)
\(\Leftrightarrow x^2+2x-4=-3m\)
Ta có đồ thị hàm \(y=x^2+2x-4\) như sau:
Nhìn vào đồ thị, để \(y=-3m\) cắt \(y=x^2+2x-4\) tại 2 điểm pb thuộc \(\left[-2;3\right]\)
\(\Rightarrow-5< -3m\le-4\Rightarrow\frac{4}{3}\le m< \frac{5}{3}\)
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
Theo phương trình hoành độ giao điểm:
\(x+1-m=-x^2\)
\(\Leftrightarrow x^2+x+1-m=0\)
Phương trình cần 2 nghiệm phân biệt:
\(\Rightarrow\Delta>0\)
\(\Leftrightarrow1^2-4\left(1-m\right)>0\)
\(\Leftrightarrow4m-3>0\)
\(\Leftrightarrow m>\frac{3}{4}\)
Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=1-m\end{matrix}\right.\)
\(y_1=x_1+1-m\)
\(y_2=x_2+1-m\)
\(x_1+1-m-\left(x_2+1-m\right)=x_1^2-x_2^2+1\)
\(\Leftrightarrow x_1-x_2=x^2_1-x^2_2+1\)
Vậy với \(m>\frac{3}{4}\)thõa mản điều kiện ban đầu (?)