Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này chắc có câu a đúng ko
ta có \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{c}=\frac{c}{b}=\frac{b}{a}\)
\(\Leftrightarrow a^4c^2+b^4a^2+c^4b^2=abc\left(a^2c+c^2a+b^2c\right)\)
đặt \(x=a^2c;y=b^2a;z=c^2b\)ta được
\(x^2+y^2+z^2=xy+yz+zx\)
áp dụng kết quả của câu a ta đc
\(\left(x-y\right)^2+\left(y-2\right)^2+\left(z-x\right)^2=0=>x=y=z\)
\(=>a^2c=b^2a=c^2b=>ac=b^2;bc=a^2;ab=c^2\)
=>a=b=c(dpcm)
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)
Đặt \(\frac{a}{b}=x;\frac{b}{c}=y;\frac{c}{a}=z\)
Khi đó:\(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Mà \(\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0;\left(z-x\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Dấu "=" xảy ra tại x=y=z hay a=b=c
Suy ra điều fải chứng minh
\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)
\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)
\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)
\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)
Rồi tương tự các kiểu:v
Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)
\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))
Không phải dùng tới Cauchy-Schwarz:D
a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
Tương tự :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế :
\(\Rightarrow2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b = c
ta có a/b+c+b/a+c+c/a+b=1
=> (a+b+c)(a/b+c+b/a+c+c/a+b)=a+b+c
=> a^2/b+c+ab/a+c+ac/a+b+ba/b+c+b^2/a+c+bc/a+b+ca/b+c+bc/a+c+c^2/a+b=a+b+c
=> a^2/b+c+(ba/b+c+ca/b+c)+b^2/a+c+(ab/a+c+bc/a+c)+c^2/a+b+(ac/a+b+bc/a+b)=a+b+c
=>( a^2/b+c)+a+(b^2/a+c)+b+(c^2/a+b)+c=a+b+c
=> a^2/b+c+b^2/a+c+c^2/a+b=0