Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\) => \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Vậy ...
a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ
\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
đặt \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=a\)
\(\Rightarrow z=\frac{4y-2a}{3}\Rightarrow\frac{z}{4}=\frac{y-2a}{3}\)
\(x=\frac{4a+2y}{3}\Rightarrow\frac{x}{2}=\frac{2a+y}{3}\)
\(\left\{\begin{matrix}6x-4y=16y-12z\\4z-8x=12y-9z\\9x-6y=8z-16x\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{\begin{matrix}6x-20y+12z=0\\-8x-12y+13z=0\end{matrix}\right.\)
\(\left\{\begin{matrix}48x-160y+96z=0\\-48x-72y+78z=0\end{matrix}\right.\)
\(-232y+174z=0\Rightarrow174z=232y\)
\(\Leftrightarrow\frac{174z}{174.4}=\frac{232y}{174.4}\Leftrightarrow\frac{z}{4}=\frac{y}{3}\left(1\right)\)
\(\left\{\begin{matrix}9x-6y=8z-16x\\12y-9z=4z-8x\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}25x-6y-8z=0\\8x+12y-13z=0\end{matrix}\right.\)
\(\left\{\begin{matrix}50x-12y-16z=0\\8x+12y-13z=0\end{matrix}\right.\)
\(58x-29z=0\Leftrightarrow58x=29z\Leftrightarrow\frac{58x}{58.2}=\frac{29z}{58.2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{z}{4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
Ta có : \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
=>\(\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4y\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)
Hay \(\frac{12x-8y}{16}=\frac{6z-12y}{9}=\frac{8y-6z}{4}\)= \(\frac{12x-8y+6z-12y+8y-6z}{16+9+4}=0\)
+, \(\frac{12x-8y}{16}=0\)=>\(12x-8y=0\)=>\(12x=8y\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
+, \(\frac{6z-12x}{9}=0\Rightarrow6z-12x=0\Rightarrow6z=12x\Rightarrow z=2x\Rightarrow\frac{z}{4}=\frac{x}{2}\left(2\right)\)
+, \(\frac{8y-6z}{4}=0\Rightarrow8y-6z=0\Rightarrow8y=6z\Rightarrow4y=3z\Rightarrow\frac{y}{3}=\frac{z}{4}\left(3\right)\)
Từ (1) , (2) và (3) ta suy ra : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)(đpcm)
a) theo tinh chat day ti so ta co : x/3=y/8 va x.y= 48 => x.y/3.4 =48/12= a => x/3 =4 =>x=3.4= 12 => y/4 =4 => y = 4.4 = 16
b/ (x—1/2)2=4/25
(x—12)2=22/52
(x—1/2)2=(2/5)2
==> x—1/2=2/5 hoặc x—1/2=—2/5
==> x=2/5+1/2 hoặc x= —2/5+1/2
==> x= 4/10+5/10 hoặc x= —4/10+5/10
==> x= 9/10 hoặc x= 1/10