\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

a) kết quả bằng 5

b) kết quả là 0,7795480451

19 tháng 10 2020

Đề như vậy thôi hả -_-

21 tháng 4 2020

@Mai.T.Loan câu a pha cuối hơi tắt đó nhìn khó hiểu lắm

còn câu b kl sai r nha

21 tháng 4 2020
https://i.imgur.com/K1Kg6qE.jpg
2 tháng 6 2019

\(A=\)\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

   \(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\) \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(-\frac{\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+x+1\right)}\)

   \(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

    =   \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+x+1}\)

học tốt

2 tháng 6 2019

\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

\(A=\frac{x+2}{\sqrt{x}^3-1^3}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

Ta có : x + 1 \(\ge\)\(2\sqrt{x}\)nên \(x+\sqrt{x}+1\ge3\sqrt{x}\)

\(\Rightarrow A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\le\frac{\sqrt{x}}{3\sqrt{x}}=\frac{1}{3}\)

Vậy GTLN của A là \(\frac{1}{3}\)\(\Leftrightarrow x=1\)

2 tháng 3 2020

Câu 3 :

\(ĐKXĐ:x>0\)

 \(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)

b) Để P = 3

\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)

\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)

\(\Leftrightarrow x-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)(tm)

Vậy để \(P=3\Leftrightarrow x=4\)

2 tháng 3 2020

Câu 1 : Hình như sai đề !! Mik sửa :

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)

b) Để A < 2

\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)

\(\Leftrightarrow-1< 2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}>3\)

\(\Leftrightarrow\sqrt{x}>1,5\)

\(\Leftrightarrow x>2,25\)

Vậy để \(A< 2\Leftrightarrow x>2,25\)

22 tháng 12 2017

\(A=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)  \(ĐKXĐ:x\ge0;x\ne1;x\ne4\)

\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right]:\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-4}{x-1}\right]\)

\(A=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left[\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

vậy \(A=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b)theo bài ra: \(A=\frac{1}{\sqrt{x}}\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right).\sqrt{x}=\sqrt{x}+2\)

\(\Leftrightarrow x-\sqrt{x}-\sqrt{x}-2=0\)

\(\Leftrightarrow x-2\sqrt{x}-2=0\)

\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-\left(\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1-\sqrt{3}=0\\\sqrt{x}-1+\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\left(\sqrt{3}+1\right)^2\\x=\left(1-\sqrt{3}\right)^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3+2\sqrt{3}+1\\x=3-2\sqrt{3}+1\end{cases}}\)

vậy......

5 tháng 2 2022

Trả lời:

a, \(B=\left(\frac{x+\sqrt{x}-1}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\left(ĐK:x>0;x\ne1\right)\)

\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}\right)^3-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right):\frac{1}{\sqrt{x}-1}\)

\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\)

\(=\left(\frac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}-1-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}-1-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}-1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b, \(B< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}< \frac{1}{3}\)

\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}}{3\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{-\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)

Vì  \(-\left(\sqrt{x}-1\right)^2< 0\) với mọi \(x>0;x\ne1\)

      \(3\left(x+\sqrt{x}+1\right)>0\) với mọi  \(x>0;x\ne1\)

\(\Rightarrow\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)  luôn đúng với mọi \(x>0;x\ne1\)

Vậy \(B< \frac{1}{3}\)

c, \(B=\frac{1}{2\sqrt{x}+1}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{2\sqrt{x}+1}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)=x+\sqrt{x}+1\)

\(\Leftrightarrow2x+\sqrt{x}=x+\sqrt{x}+1\)

\(\Leftrightarrow x=1\) (tm)

Vậy x = 1 là giá trị cần tìm 

3 tháng 8 2017

Mới đc câu a ak, thog cảm nha, trih độ mih thấp lắm:

\(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}\)

=\(\frac{a+\sqrt{ab}-\sqrt{ab}+b}{a-b}-\frac{2b}{a-b}\)

=\(\frac{a+b-2b}{a-b}=\frac{a-b}{a-b}=1\)

3 tháng 8 2017

bùn ngủ , mai lm câu b cho nha