\(\frac{x^2+2x}{x^2-2x+1}\)\(:\left(\frac{x+1}{x}+\frac{1}{x-1}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

a) đk: \(x\ge0;x\ne\left\{\frac{1}{4};1\right\}\)

\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\left[\frac{\left(2x+\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{x-1}\right]\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{\left(x-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

21 tháng 9 2020

b) Ta có: 

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)-1}{x+\sqrt{x}+1}=1-\frac{1}{x+\sqrt{x}+1}\)

Mà \(x+\sqrt{x}\ge0\left(\forall x\right)\)

\(\Leftrightarrow x+\sqrt{x}+1\ge1\left(\forall x\right)\)

\(\Leftrightarrow\frac{1}{x+\sqrt{x}+1}\le1\left(\forall x\right)\)

\(\Leftrightarrow P=1-\frac{1}{x+\sqrt{x}+1}\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x+\sqrt{x}=0\Leftrightarrow x=0\)

Vậy Min(P) = 0 khi x = 0

\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)

\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)

b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)

\(2\sqrt{x}-1>0\);\(4x>0\)

\(\Rightarrow x>0\)thì \(A>A^2\)

5 tháng 9 2018

giải giúp em với mấy anh chị

7 tháng 7 2017

Bài 1 

ĐK \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

 A =\(\left(\frac{x^2-x+7}{\left(x+2\right)\left(x-2\right)}+\frac{1}{x+2}\right):\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{2x}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{x^2-x+7+x-2}{\left(x+2\right)\left(x-2\right)}:\frac{x^2+4x+4-x^2+4x-4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2+5}{\left(x+2\right)\left(x-2\right)}.\frac{\left(x+2\right)\left(x-2\right)}{6x}=\frac{x^2+5}{6x}\)

b , \(A=1\Rightarrow\frac{x^2+5}{6x}=1\Rightarrow x^2-6x+5=0\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}\left(tm\right)}\)

Vậy x=1 hoặc  x=5

Bài 2.

a. \(B=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2+x\right)\left(2-x\right)}:\frac{x+3}{2-x}\)

\(=\frac{4x^2+8x}{\left(2+x\right)\left(2-x\right)}.\frac{2-x}{x+3}=\frac{2x}{x+3}\)

b.  \(B=\frac{2x}{x+3}=2-\frac{6}{x+3}\)

B nguyên \(\Leftrightarrow x+3\inƯ\left(-6\right)\Rightarrow x+3\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)

Vậy \(x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)thì B nguyên