Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như sửa đề lại nhé
Câu hỏi của Tuấn Anh - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé
mình vừa mới trả lời xong đấy
Câu hỏi của Do Not Ask Why - Toán lớp 7 - Học toán với OnlineMath
Ta có :
A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A = \(\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
A = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
A = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
A = \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Tách A thành 2 nhóm,ta được :
A = \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
Lại có : \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75}\text{ }\text{ }\)
\(\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\text{ }\text{ }\)
A > \(\left(\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{1}{75}.25+\frac{1}{100}.25\)
\(=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
A < \(\left(\frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}\right)+\left(\frac{1}{76}+\frac{1}{76}+...+\frac{1}{76}\right)=\frac{1}{51}.25+\frac{1}{76}.25< \frac{1}{50}.25+\frac{1}{75}.25\)
\(=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Vậy \(\frac{7}{12}< A< \frac{5}{6}\)
A= 1-\(\frac{1}{2}\) +\(\frac{1}{3}\) - \(\frac{1}{4}\) +\(\frac{1}{5}\)- \(\frac{1}{6}\) + ...+ \(\frac{1}{99}\) - \(\frac{1}{100}\)
= 1+ \(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) + \(\frac{1}{5}\) + \(\frac{1}{6}\) + ...+ \(\frac{1}{99}\) + \(\frac{1}{100}\) - 2 ( \(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{6}\) + ...+ \(\frac{1}{100}\) )
= 1+ \(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) + ...+ \(\frac{1}{99}\) + \(\frac{1}{100}\)
= \(\frac{1}{51}\) + \(\frac{1}{52}\) +...+ \(\frac{1}{100}\)
= (\(\frac{1}{51}\) + \(\frac{1}{52}\) + ... + \(\frac{1}{75}\) ) + ( \(\frac{1}{76}\) + \(\frac{1}{77}\) + ... + \(\frac{1}{100}\) )
Ta có : \(\frac{1}{51}\) > \(\frac{1}{52}\) > \(\frac{1}{53}\) > ... > \(\frac{1}{75}\)
\(\frac{1}{76}\) > \(\frac{1}{77}\) > \(\frac{1}{78}\) > ... > \(\frac{1}{100}\)
=> A > \(\frac{1}{75}.25\) + \(\frac{1}{100}.25\) = \(\frac{1}{3}\) + \(\frac{1}{4}\) = \(\frac{7}{12}\)
=> A< \(\frac{1}{51}.25\) + \(\frac{1}{75}.25\) < \(\frac{1}{50}.25\) + \(\frac{1}{75}.25\) = \(\frac{1}{2}\) + \(\frac{1}{3}\) = \(\frac{5}{6}\)
Vậy \(\frac{7}{12}\) < A < \(\frac{5}{6}\)
Tick nha
\(A=\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
Chia A làm 2 phần,mỗi phân 25 số hạng.
\(A>\frac{25.1}{75}+\frac{25.1}{100}\)
\(A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Bé hơn em làm tương tự có điều để nguyên cả 50 p/số.
Chúc em học tốt^^
bạn có thể giải cụ thể hơn cho mình được ko ?
mình chả hiểu gì cả