Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ko chắc nhen
Xét mẫu:
2999/1 + 2998/2 + 2997/3 + ... + 1/2999
2999 + 2998/2 + 2997/3 + ... + 1/2999
( 1 + 2998/2 ) + ( 1 + 2997/3 ) + ... + ( 1 + 1/2999 ) + 1 [Giải thích nek:chia số tự nhiên 2999 thành 2999 số 1 rồi gộp vào các phân số]
3000/2 + 3000/3 + ... + 3000/2999 + 3000/3000
3000 . ( 1/2 + 1/3 + ... + 1/2999 + 1/3000 )
Giờ thì phần tử và phần trong ngoặc của mẫu đã giống nhau nên loại bỏ
=>N=1/3000
Ta có \(A=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+...+\frac{1}{2999}}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+1+...+1\right)+\frac{2998}{2}+...+\frac{1}{2999}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+\frac{2998}{2}\right)+\left(1+\frac{2997}{3}\right)+...+\left(1+\frac{1}{2999}\right)+\frac{3000}{3000}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{3000}}\)
= \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
Vậy A= \(\frac{1}{3000}\)
Câu 1:
B = \(\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}\)
= \(\frac{3000-1}{1}+\frac{3000-2}{2}+\frac{3000-3}{3}+...+\frac{3000-2999}{2999}\)
= \(\left(\frac{3000}{1}+\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{2999}\right)-\left(\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{2999}{2999}\right)\)
= \(3000+3000.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)-2999\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)+\frac{3000}{3000}\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
a) \(\frac{7}{5}.\frac{-31}{125}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}=\frac{7.\left(-31\right).1.10.\left(-1\right)}{5.2.125.17.2^3}=\frac{31.7}{17.125.2^3}=\frac{217}{17000}\)
b) \(\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)=\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).0=0\)
c) \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)
d) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-99}{100}=\frac{-\left(1.2.3..99\right)}{2.3.4...100}=-\frac{1}{100}\)
e) \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}=\frac{\left(1.2.3..29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)
\(=\frac{1.31}{30.2}=\frac{31}{60}\)
Thực hiện phép tính
a ) \(\frac{2}{5}+\frac{-1}{6}-\frac{3}{4}-\frac{-2}{3}\)
= \(\frac{2}{5}+\frac{-1}{6}+\frac{-3}{4}+\frac{2}{3}\)
= \(\left(\frac{2}{5}+\frac{-3}{4}\right)+\left(\frac{-1}{6}+\frac{2}{3}\right)\)
= \(\left(\frac{8}{20}+\frac{-15}{20}\right)+\left(\frac{-1}{6}+\frac{4}{6}\right)\)
= \(\left(\frac{8+\left(-15\right)}{20}\right)+\left(\frac{\left(-1\right)+4}{6}\right)\)
= \(\frac{-7}{20}+\frac{1}{2}\)
= \(\frac{-7}{20}+\frac{10}{20}=\frac{\left(7\right)+10}{20}=\frac{3}{20}\)
tk mk nha
đang âm rất nhiều rồi , giúp nha !!!!!
\(x-40\%x=3,6\)
\(\Rightarrow100\%x-40\%x=3,6\)
\(\Rightarrow60\%x=3,6\)
\(\Rightarrow\frac{60}{100}x=3,6\)
\(\Rightarrow x=6\)
\(3\frac{2}{7}x-\frac{1}{3}=-2\frac{3}{4}\)
\(\Rightarrow\frac{23}{7}x-\frac{1}{3}=-\frac{11}{4}\)
\(\Rightarrow\frac{23}{7}x=-\frac{33}{12}+\frac{4}{12}\)
\(\Rightarrow\frac{23}{7}x=\frac{29}{12}\)
\(\Rightarrow x=\frac{29}{12}:\frac{23}{7}=\frac{203}{276}\)
\(\left(2+\frac{5}{6}\right)\div1\frac{1}{5}+\frac{-7}{12}\)
\(=\left(\frac{12}{6}+\frac{5}{6}\right)\div\frac{6}{5}-\frac{7}{12}\)
\(=\frac{17}{6}\div\frac{6}{5}-\frac{7}{12}\)
\(=\frac{17}{6}\times\frac{5}{6}-\frac{7}{12}\)
\(=\frac{85}{12}-\frac{7}{12}\)
\(=\frac{78}{12}=\frac{13}{2}\)
\(\left(15-6\frac{13}{18}\right)\div11\frac{1}{7}-2\frac{1}{8}\div1\frac{11}{40}\)
\(=9\frac{13}{18}\div\frac{78}{7}-\frac{17}{8}\div\frac{51}{40}\)
\(=\frac{175}{18}\div\frac{78}{7}-\frac{17}{8}\times\frac{40}{51}\)
\(=\frac{175}{18}\times\frac{7}{78}-\frac{5}{3}\)
\(=\frac{1225}{1404}-\frac{5}{3}\)
\(=\frac{1225}{1404}-\frac{2340}{1404}\)
\(=\frac{-1115}{1404}\)