\(\frac{1}{2}\) + \(\frac{3}{4}\)+\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

Mai lên lop tao giai cho 

20 tháng 3 2017

Cách giải là:Đếu biết

https://h.vn/hoi-dap/question/203861.html

bạn tham khảo nhé

28 tháng 2 2020

Có A = 1/2.3/4.5/6 ... 9999/10000 

Đặt B = 2/3.4/5.6/7 ... 10000/10001
Ta có A.B = 1/2.2/3.3/4 ... 10000/10001 = 1/10001 (1)
Lại có :
1/2 < 2/3
3/4 < 4/5
................
9999/10000 < 10000/10001

 =>1/2.3/4.....9999/10000<2/3.4/5.....10000/10001

=> A < B => A² < A.B (2)
(1),(2) => A² < 1/10001 => A²<1/10000=>A<1/100=0,01(đpcm)

#Chino

25 tháng 2 2019

Câu hỏi của Lưu Nho - Toán lớp 6 - Học toán với OnlineMath

25 tháng 2 2019

Đặt \(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot....\cdot\frac{10000}{10001}\)

\(\Rightarrow A< B\)

\(\Rightarrow A^2< AB\)

\(\Rightarrow A^2< \left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot....\cdot\frac{9999}{10000}\right)\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot....\cdot\frac{10000}{10001}\right)\)

\(=\frac{1}{10001}< \frac{1}{10000}=0.0001\)

\(\Rightarrow A^2< 0.0001\)

\(\Rightarrow A< 0.1\)

tích mình đi

làm ơn

rùi mình

tích lại

thanks

a)\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}=\)\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}=\frac{101}{2.100}=\frac{101}{200}\)

b)\(\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.....\frac{3599}{3600}=\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.6}.....\frac{59.61}{60.60}=\frac{2.61}{60}=\frac{61}{30}\)

1 tháng 5 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 2\left(đpcm\right)\)

8 tháng 8 2018

Đặt A = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{9998}{9999}.\frac{10000}{10000}\)

Rõ ràng A < A'

=> A2 < A . A' \(=\frac{1}{10000}=\frac{1}{100^2}\)

Nên A < 0,01