\(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+........+\frac{1}{98}-\frac{1}{99}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

OK. Tối nhớ giải hộ mik nha

Mik hứa sẽ lik-e cho bạn

 

26 tháng 2 2017

mình ko biết

3 tháng 6 2019

Đặt : \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

Ta thấy :

\(\frac{1}{5^2}< \frac{1}{4.5}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(\frac{1}{7^2}< \frac{1}{6.7}\)

\(.......................\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)

Vì \(\frac{1}{6}< \frac{6}{25}< \frac{1}{4}\)nên \(\frac{1}{6}< A< \frac{1}{4}\)hay \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)

~ Hok tốt ~

3 tháng 6 2019

Bài 1:

Đặt  \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

Ta có: 

\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

Ta có:

\(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)

\(\Rightarrow\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(\text{đ}pcm\right)\)

Bài 2:

\(a)\)Tách tổng A thành ba nhóm:

\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{70}\right)\)

\(A>\frac{1}{30}\cdot20+\frac{1}{50}\cdot20+\frac{1}{70}\cdot20=\frac{2}{3}+\frac{2}{5}+\frac{2}{7}=1\frac{37}{105}\)

\(A>1\frac{35}{105}=1\frac{1}{3}=\frac{4}{3}\left(\text{đ}pcm\right)\)

\(b)\)Tách tổng A thành sáu nhóm:

\(A=\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)\)\(+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)

\(A< \frac{1}{11}\cdot10+\frac{1}{21}\cdot10+\frac{1}{31}\cdot10+\frac{1}{41}\cdot10+\frac{1}{51}\cdot10+\frac{1}{61}\cdot10\)

\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)< 2+0,5=2,5\left(\text{đ}pcm\right)\)

#Sakura

24 tháng 3 2018

* Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt 

Ta có a.b.c = a + b + c 

Giả sử a = b = c ta có a3 = 3a => a2 = 3.(vô lý) => a; b; c là 3 số nguyên dương phân biệt. 

* Tìm các số nguyên dương: 

Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý). 

Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3. 

Kết luận: Số cần tìm là 1; 2; 3 .

16 tháng 4 2015

b.Đặt A = \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}\) < \(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)\(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}\)\(\frac{1}{4}-\frac{1}{100}=\frac{25}{100}-\frac{1}{100}=\frac{24}{100}<\frac{25}{100}=\frac{1}{4}\)(1)

A > \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)(2)

Từ (1) và (2) =>\(\frac{1}{6}\) < A < \(\frac{1}{4}\)

17 tháng 4 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..............+\frac{1}{99^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+................+\frac{1}{98.99}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{98}-\frac{1}{99}\)

\(=1-\frac{1}{99}=\frac{98}{99}< 1\)

\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.............+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...............+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

Vậy \(\frac{49}{100}< A< 1\)

2 tháng 9 2017

Ta có : \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};....;\frac{99}{100}< \frac{100}{101}\)

Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)\(\Rightarrow B>A\)

\(\Rightarrow A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)

\(\Rightarrow A.B=\frac{1}{101}\)

Vì \(B>A\)\(\Rightarrow A.B>A.A=A^2\)

\(\Rightarrow\frac{1}{101}>A^2\)

Mà \(\frac{1}{10^2}>\frac{1}{101}>A^2\Rightarrow\frac{1}{10^2}>A^2\)

\(\Rightarrow\frac{1}{10}< A\left(1\right)\)\(\)

Ta lai có :

\(\frac{1}{2}=\frac{1}{2};\frac{3}{4}>\frac{2}{3};\frac{5}{6}>\frac{4}{5};...;\frac{99}{100}>\frac{98}{99}\)

Đặt \(C=\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)

\(\Rightarrow A.C=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\right)\)

\(\Rightarrow A.C=\frac{1}{2}.\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)

\(\Rightarrow A.C=\frac{1}{200}\)

Vì \(A>C\)

\(\Rightarrow A^2>A.C=\frac{1}{200}\)

Mà \(A^2>\frac{1}{200}>\frac{1}{15^2}\)

\(\Rightarrow A^2>\frac{1}{15^2}\)

\(\Rightarrow A>\frac{1}{15}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{1}{15}< A< \frac{1}{10}\)

\(\RightarrowĐPCM\)

26 tháng 5 2019

                                                                    Bài giải

 \(\frac{1}{2}< \frac{2}{3}\text{ ; }\frac{3}{4}< \frac{4}{5}\text{ ; }\frac{5}{6}< \frac{6}{7}\text{ ; }...\text{ ; }\frac{99}{100}< \frac{100}{101}\)

\(\text{Đặt }B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(\Rightarrow\text{ }A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(\Rightarrow\text{ }A\cdot A< A\cdot B=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right)\)

\(A\cdot A< A\cdot B=\frac{1}{101}< \frac{1}{10}\)

\(A^2< \frac{1}{10}\text{ }\Rightarrow\text{ }A< \frac{1}{10}^{^{\left(1\right)}}\)

\(\frac{1}{2}=\frac{1}{2}\text{ ; }\frac{3}{4}>\frac{2}{3}\text{ ; }\frac{5}{6}>\frac{4}{5}\text{ ; }...\text{ ; }\frac{99}{100}>\frac{98}{99}\)

\(\text{Đặt }C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\)

\(A\cdot C=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\right)\)

\(A\cdot C=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\)

\(A\cdot C=\frac{1}{200}\)

\(\text{Vì }A>C\text{ }\Rightarrow\text{ }A^2>A\cdot C=\frac{1}{200}\)

\(\text{Mà }A^2>\frac{1}{200}>\frac{1}{15^2}\)

\(\Rightarrow\text{ }A>\frac{1}{15}^{^{\left(2\right)}}\)

\(\text{Từ }^{\left(1\right)}\text{ và }^{\left(2\right)}\)

\(\Rightarrow\text{ }\frac{1}{15}< A< \frac{1}{10}\)

\(\Rightarrow\text{ }\text{ĐPCM}\)

Y
18 tháng 4 2019

\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)

\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)

\(\Rightarrow4A=5A-A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt \(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

Khi đó \(4A=B-\frac{99}{5^{100}}< B\)

\(5B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)

\(B=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}+\frac{1}{5^{99}}\)

\(\Rightarrow4B=5B-B=1-\frac{1}{5^{99}}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{4\cdot5^{99}}< \frac{1}{4}\)

\(\Rightarrow4A < B\Rightarrow4A< \frac{1}{4}\)

\(\Rightarrow A< \frac{1}{16}\) ( đpcm )

Y
18 tháng 4 2019

2. \(M=\left(1+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(M=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)

\(\Rightarrow\left(M-N\right)^3=0\)

26 tháng 6 2020

\(A=\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)

\(\Leftrightarrow5A=\frac{1}{5}+\frac{2}{5^2}+......+\frac{99}{5^{99}}\)

\(\Leftrightarrow5A-A=\left(\frac{1}{5}+\frac{2}{5^2}+....+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)

\(\Leftrightarrow4A=\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt : \(H=\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\)

\(\Leftrightarrow5H=1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\)

\(\Leftrightarrow5H-H=\left(1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)

\(\Leftrightarrow4H=1-\frac{1}{5^{99}}\)

\(\Leftrightarrow H=\frac{1}{4}-\frac{1}{4.5^{99}}< \frac{1}{4}\)

\(\Leftrightarrow4A< B< \frac{1}{4}\)

\(\Leftrightarrow A< \frac{1}{16}\left(đpcm\right)\)