Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Ta có: 202220212+k≤202220212202220212+k≤202220212 (với kklà số tự nhiên bất kì)
Ta có:
A=202220212+1+202220212+2+...+202220212+2021A=202220212+1+202220212+2+...+202220212+2021
≤202220212+202220212+...+202220212=202220212.2021=20222021≤202220212+202220212+...+202220212=202220212.2021=20222021
Ta có: 202220212+k>202220212+2021=20222021.2022=12021202220212+k>202220212+2021=20222021.2022=12021với kktự nhiên, k<2021k<2021)
Suy ra A=202220212+1+202220212+2+...+202220212+2021A=202220212+1+202220212+2+...+202220212+2021
>12021+12021+...+12021=20212021=1>12021+12021+...+12021=20212021=1
Suy ra 1<A≤202220211<A≤20222021do đó AAkhông phải là số tự nhiên.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)
\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)
\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)
\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)
\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\Rightarrow-\frac{1}{12}\left(x-2018\right)=0\Leftrightarrow x=2018\)
Bài làm :
Ta có :
\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)
\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)
\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)
\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)
\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\text{Vì : }\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\ne0\Rightarrow x-2018=0\)
\(\Rightarrow x=2018\)
Vậy x=2018
Ta có: \(A=\frac{2020}{2021}+\frac{2021}{2022}\)
\(\Rightarrow A=\frac{2021}{2021}-\frac{1}{2021}+\frac{2022}{2022}-\frac{1}{2022}\)
\(\Rightarrow A=1-\frac{1}{2021}+1-\frac{1}{2022}\)
\(\Rightarrow A=1+1-\frac{1}{2021}-\frac{1}{2022}\)
\(\Rightarrow A=2-\frac{1}{2021}-\frac{1}{2022}\)
\(\Rightarrow A=2-\frac{1}{2021\cdot2022}\)
\(B=\frac{2020+2021}{2021+2022}\)
\(\Rightarrow B=\frac{2021+2022}{2021+2022}-\frac{2}{2021+2022}\)
\(\Rightarrow B=1-\frac{2}{2021+2022}\)
\(\Rightarrow B=1-\frac{2}{4043}\)
Vậy ta sẽ so sánh:
\(1-\frac{1}{2021\cdot2022};\frac{2}{4043}\)
Vì \(2021\cdot2022>4043\)nên \(\frac{1}{2021\cdot2022}< \frac{2}{4043}\)vậy \(1-\frac{1}{2021\cdot2022}>\frac{2}{4043}\)
\(\Rightarrow\frac{2020}{2021}+\frac{2021}{2022}>\frac{2020+2021}{2021+2022}\)
\(\Rightarrow A>B\)