A D H B E I K M N ABED, HIEK là những hình vuông

a- Chứng mi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

a. Ta sẽ chứng minh H là trực tâm tam giác BDK.

Thật vậy, \(\widehat{HKD}=45^o=\widehat{AED}\)\(\Rightarrow\)HK // AE (vì 2 góc HKD và góc AED nằm ở vị trí đồng vị) \(\Rightarrow\)KH \(\perp\)BD.

Mặt khác, BE \(\perp\)DK.

Từ hai điều trên suy ra H là trực tâm tam giác BDK.

Suy ra HD \(\perp\)BK.

b. Ý tưởng là ta sẽ lập ra các tỉ số có các đoạn DN và BD, KM và BK  dựa vào tam giác đồng dạng.

Dễ dàng chứng minh: \(\Delta DNH~\Delta DMB\left(g.g\right)\)\(\Rightarrow\)\(\frac{DN}{DM}=\frac{DH}{DB}\Rightarrow DN.DB=DM.DH\)

Tương tự ta chứng minh được \(KM.KB=KH.KN\)

- Lại có \(DH.DM=DE.DK\)vì \(\Delta DEH~\Delta DMK\left(g.g\right)\)

tương tự, ta có \(KH.KN=KE.DK\left(g.g\right)\)

Vậy \(DN.DB+KM.BK=DM.DH+KH.KN=DE.DK+KE.DK=DK\left(DE+KE\right)=DK.DK\)

9 tháng 4 2019

Ai kb vs mình nha

9 tháng 4 2019

hello bạn cùng tuổi cùng tên nha

20 tháng 6 2019

Tham khảo các bài toán khó trên h.vn nhé bạn hoặc

20 tháng 6 2019

Câu hỏi tương tự:https://olm.vn/hoi-dap/detail/217354191899.html

~Hok tốt~

1 tháng 1 2017

Hướng giải: 

a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật

b) C/m IN là đg tb của tam giác ABC => NA = NC 

Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)

*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải. 

1 tháng 1 2017

Bài 2: 

a) HE//MN ( _|_ KM) và M^ = 90o => hình thang vuông

b) Tương tự câu b bài 1

c) Thắc mắc về đề bài. Tương tự câu c bài 1 

19 tháng 8 2019

a) AEBF là hình thang vuôngvì EF là đường trung bình \(\Rightarrow EF//AB\)

b) Xét hai tam giác vuông ABK và EIK có góc EKI = góc AKB nên \(\Delta ABK\approx\Delta IEK\)

\(\Rightarrow\frac{AB}{BK}=\frac{EI}{EK}\)

c) Xét \(\Delta AKB=\Delta AKH\left(ch-gn\right)\)

+ AK chung

+ Góc BAK = góc HAK

Vậy BK = HK

Gọi giao điểm của HK và AK là P

Xét \(\Delta PBK=\Delta PHK\left(c.g.c\right)\)

+ PK Chung

+ BK = HK

+ Góc PKB = góc PKH 

Suy ra góc PBK = góc PHK 

Ta có 

\(\hept{\begin{cases}\widehat{PBK}+\widehat{ABP}=90^0\\\widehat{BAP}+\widehat{ABP}=90^0\end{cases}}\Rightarrow\widehat{PBK}=\widehat{BAP}=\widehat{IAF}\left(1\right)\)

\(\hept{\begin{cases}\widehat{EKI}=\widehat{PKB}=\widehat{PKH}\\\widehat{EIK}+\widehat{EKI}=90^0\end{cases}}\)

Mà \(\hept{\begin{cases}\widehat{PKH}+\widehat{PHK}=90^0\\\widehat{EIK}+\widehat{PKH}=90^0\end{cases}\Rightarrow}\widehat{BHK}=\widehat{EIK}\left(2\right)\)

Từ (1) và (2) ta có đpcm vì hai tam giác BKH và AFI đều là hai tam giác cân có hai góc ở đáy bằng nhau 

Nên hai tam giác trên đồng dạng

d)

14 tháng 5 2019

câu a,b thì mình làm được còn câu c,d thì mình chưa làm ra. Chân thành xin lỗi

a) có \(\widehat{BDC}=45^0\)(ABCD là hình vuông, BD là đường chéo)

\(\widehat{DKN}\left(hay\widehat{DKH}\right)=45^0\)(CHIK là hình vuông và KH là đường chéo)

\(\Rightarrow\widehat{BDC}+\widehat{DKN}=45^0+45^0=90^0\)

\(\Rightarrow\Delta DKN\)vuông tại N

\(\Rightarrow KN\perp DN\)

mà \(BC\perp DK\)

 KN và BC cắt nhau tại H

suy ra H là trực tâm của tam giác BDK

nên \(DH\perp BK\)

b) Xét \(\Delta DMB\&\Delta KNB\)

có \(\widehat{DMB}=\widehat{KNB}\)=900

\(\widehat{DBK}chung\)

\(\Rightarrow\Delta DMB\) \(\Delta KNB\)(g-g)

\(\Rightarrow\frac{MB}{NB}=\frac{BD}{BK}\)

từ tỉ số trên ta đễ chứng minh \(\Delta BMN\)\(\Delta BDK\)

cm tương tự ta có \(\Delta CMK\)\(\Delta BDK\)

\(\Rightarrow\Delta BMN\)\(\Delta CMK\)

\(\Rightarrow\widehat{BMN}=\widehat{CMK}\)

lại có \(\hept{\begin{cases}\widehat{BMN}+\widehat{DMN}=90^0\\\widehat{CMK}+\widehat{DMC}=90^0\end{cases}}\)(\(DM\perp BK\))

\(\Rightarrow\widehat{DMN}=\widehat{DMC}\)

nên MD là phân giác của \(\widehat{NMC}\)