\(A = {\cos ^2}{38^0} + {\cos ^2}{52^0} + {\cos ^2}{60^0}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

Ta có \(\cos1^o=\sin89^o\)

         \(\cos2^o=sin88^o\)

          ................

          \(\cos44^o=\sin46^o\)

           \(\cos45^o=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\cos^21^o=\sin^289^o\)

     \(\cos^22^o=\sin^288^o\)

      ....................................

     \(\cos^244^o=\sin^246^o\)

     \(\cos^245^o=\frac{2}{4}=\frac{1}{2}\)

Khi đó \(B=\sin^289^o+\sin^288^o+...+\sin^246^o+\cos^245^o+\cos^246^o+...+\cos^289^o\)

\(=\left(\sin^289^o+\cos^289^o\right)+\left(\sin^288^o+\cos^288^o\right)+...+\left(\sin^246^o+\cos^246^o\right)+\cos^245^o\)

\(=1+1+...+1+\frac{1}{2}\)(44 số 1)

\(=44+\frac{1}{2}=\frac{89}{2}=44,5\)

22 tháng 7 2018

Bài 1 :

\(D=cos^220^0+cos^230^0+cos^240^0+cos^250^0+cos^260^0+cos^270^0\)

\(=\left(cos^220^0+cos^270^0\right)+\left(cos^230^0+cos^260^0\right)+\left(cos^240^0+cos^250^0\right)\)

\(=1+1+1=3\)

Bài 2 :

\(E=sin^25^0+sin^225^0+sin^245^0+sin^265^0+sin^285^0\)

\(=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0\)

\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

Bài 3 :

\(F=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(=1-3sin^2\alpha.cos^2\alpha+3sin^2a.cos^2\alpha\)

\(=1\)

15 tháng 8 2016

a) \(cos^275+cos^253+cos^217+cos^237\)

ta áp dụng: \(sin^2a+cos^2a=1\)

ta được: \(\left(cos^275+cos^2\left(90-75\right)\right)+\left(cos^253+cos^2\left(90-53\right)\right)\)

=\(1+1=2\)

b) \(\frac{tan^215-1}{cot75-1}-cos75\)

=\(\frac{\left(tan15-1\right)\left(tan15+1\right)}{tan15-1}-cos75\)

=\(tan15+1-sin15\)=sin15\(\left(\frac{1}{cos15}-1+\frac{1}{sin15}\right)\)

 

15 tháng 8 2016

a) \(cos^273^o+cos^253^o+cos^217^o+cos^237^o=\left(cos^273^o+cos^217^o\right)+\left(cos^253^o+cos^237^o\right)\)

\(=\left(cos^273^o+sin^273^o\right)+\left(cos^253^o+sin^253^o\right)=1+1=2\)

b) \(\frac{tan^215^o-1}{cotg75^o-1}-cos75^o=\frac{\left(tan15^o-1\right)\left(tan15^o+1\right)}{tan15^o-1}-cos75^o=tan15^o+1-cos75^o\)

 

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

a)

\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)

\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)

b)

Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:

\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)

\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)

\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)

\(=1+0+1=2\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)

\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)

\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)

b)

Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:

\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)

\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)

\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)

\(=1+0+1=2\)

5 tháng 6 2019

Botay.com.vn

5 tháng 6 2019

\(\cos^21^o+\cos^289^o=\cos^21^o+\cos^2\left(90^o-1^o\right)=\cos^21^o+\sin^21^o=1\)

\(\cos^22^o+\cos^288^o=\cos^22^o+\cos^2\left(90^o-2^o\right)=\cos^22^o+\sin^22^o=1\)

.......

\(\cos^244^o+\cos^246^o=\cos^244^o+\cos^2\left(90^o-44^o\right)=\cos^244^o+\sin^244^o=1\)

\(\cos^245^o=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

=> \(A=1.44+\frac{1}{2}-\frac{1}{2}=44\)

18 tháng 8 2017

Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)

a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)

b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)