\(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

a) \(S=3^{n+2}-2^{n+2}+3^n-2^n\)

\(S=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(S=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)

\(S=3^n.10-2^n.5\)

\(S=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10⋮10\left(đpcm\right)\)

b) Ta có: \(\left\{{}\begin{matrix}7\left(x-2004\right)^2\ge0\\7\left(x-2004\right)^2⋮7\end{matrix}\right.\)

\(\Rightarrow y^2\le23\)\(23-y^2⋮7\)

\(\Rightarrow23-y^2\in B\left(7\right)=\left\{0;7;14;21;28;...\right\}\)

\(y^2\in N\)\(y^2\le23\)

\(\Rightarrow23-y^2=\left[{}\begin{matrix}7\\14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=4\\y=3\end{matrix}\right.\)

Thay vào là tìm được x

17 tháng 1 2018

a, S= \(3^{n+2}-2^{n+2}-3^n-2^n\)
= \(3^n.3^2-2^n.2^2+3^n-2^n\)
= \(3^n.3^2+3^n-2^n.2^2-2n\)
= \(3^n.9+3^n-\left(2^n.4+2^n\right)\)
= \(3^n\left(9+1\right)-\left[2^n\left(4+1\right)\right]\)
= \(3^n.10-2^n.5\)
= \(3^n.10-2.2^{n-1}.5\)
= \(3^n.10-2^{n-1}.10\)
= 10.( \(3^n-2^{n-1}\))
Vì 10 chia hết cho 10 nên 10.(\(3^n-2^{n-1}\)) chia hết cho 10
=> S chia hết cho 10

CÂU B là sai các bạn đừng giải, mình xin lỗi

7 tháng 7 2019

a)\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\) 

 \(=3^{28}-3^{27}-3^{26}=3^{24}\left(3^4-3^3-3^2\right)\) 

 \(=3^{24}.45⋮45\) 

\(\Rightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right)\)

  

9 tháng 2 2018

Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10 

9 tháng 2 2018

Ta có 3n+2-2n+2+3n-2n

= 3n.9-2n.4+3n-2n

= 3n(9+1)-2n(4+1)

= 3n.10-2n.5=3n.10-2n-1.10

Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n

=> 3n+2-2n+2+3n-2chia hết cho 10 với mọi số nguyên dương n

Y
9 tháng 2 2019

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\forall n\)

9 tháng 2 2019

3n+2-2n+2+3n-2n

=(3n+2+3n)+(-2n+2-2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10.(3n-2n-1) chia hết cho 10

Vậy 3n+2-2n+2+3n-2n chia hết cho 10

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

1 tháng 3 2018

Bài 2: 

Câu a) Bn chia ra thành 2 TH

Khi \(x-2y=5\)và khi \(x-2y=-5\)

Câu b) thì dễ rồi đấy

Câu c) Bn vào link này https://dainghia2004.wordpress.com/2016/12/02/ti-le-thuc-day-ti-so-bang-nhau/

Ở đó có các dạng bài về tính chất dãy tỉ số = nhau đó

1 tháng 3 2018

         \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.9-2^{n-1}.8+3^n-2^{n-1}.2\)

\(=3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\) \(⋮\) \(10\)

10 tháng 12 2017

1,

Ta có; \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

........

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng các vế ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)

2,Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến

3, 

3n+2-2n+2+3n-2n

= 3n.32-2n.22+3n-2n

= 3n(9 + 1) - 2n(4 + 1)

= 3n.10 - 2n.5

= 3n.10 - 2n-1.10

= 10(3n - 2n-1) chia hết cho 10

20 tháng 6 2016

Câu 1

4 p/s   cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau

d/s la x= - 329

Câu   2

NHân vs 7 thành 7S rồi rút gọn là đc

 

20 tháng 6 2016

Câu 1 :

a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)