...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

a) Ta có: AB < AC

=> ACB < ABC 

ABH = 90 - 60 = 30o

b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o

ABI = 90 - 30 = 60

Xét 2 tam giác vuông AIB và BHA có: AB (chung)

Ta có: BAH = ABD = 60 (cmt)

=> AIB = BHA (ch - gn)

c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)

=> AIB = BHA = 60o

=> BEA = 180 - 60 - 60 = 60o

Có: ABE = BEA = EAB = 60

=> Tam giác ABE là tam giác đều.

d) Gọi Bx là tia đối của tia BA

Xét tam giác ADB  và tam giác ADC có: AB = AE 

EAD = DAB = 30o

Cạnh AD chung.

=> Tam giác ADB = tam giác ADC (c.g.c)

=> DB = DB (1) và góc ABD = góc AED

Do đó:

CBx = CED (cùng kề bù với 2 góc = nhau)

CBx > C

=> DC > DE (2)

Từ (1); (2) => DC > DB

25 tháng 2 2019

tu ke hinh:

a, xet tam giac  ADE va tam giac ADB co : AD chung

goc EAD = goc DAB do AD la pg cua goc A (gt)

AE = AB (gt)

=> tam giac  ADE = tam giac ADB (c - g - c)

b, tam giac  ADE = tam giac ADB (Cau a)

=> DE = DB (dn) (1)

      goc DEA = goc DBA (dn)

goc DEA + goc DEC = 180 (kb)

goc DBA + goc DBF = 180 (kb)

=> goc DEC = goc DBF  (2)

xét tam giac DEC va tam giac DBF co : goc CDE = goc FDB (doi dinh) (3)

(1)(2)(3) => tam giac DEC = tam giac DBF (g - c - g)

=> CE = BF

3 tháng 5 2017

a)

Xét 2 tg ABD và ACD, có

   AD cạnh chung

AB=AC (tgABC cân tại A)

góc BAD = góc CAD

=> tg ABD=tg ACD

b)

Trong tgABC, G là trọng tâm và AD là đường phân giác.

Mà trong 1 tg cân đường phân giác trùng lên đường trung tuyến.

Mặt khác thì trọng tâm nằm trên đường trung tuyến.

=> 3 điểm A,D,G nắm trên cùng 1 đoạn thẳng

Hay: 3 điểm A,D,G thẳng hàng

c)

Trong tg cân ABC, có đường phân giác AD

=> AD trùng lên đường trung trực xuất phát từ A

=> AD>AB ( tính chất đường vuông góc với đường xiên)

d)

Ta có: tg ABD vuông tại D (AD là đường trung trực)

=> AD^2 +DB^2 = AB^2 (định lí Py-ta-go)

=>AD^2 +5^2= 13^2  (DB^2=5^2 vì DB=DC=10/2=5)

=>AD^2=13^2-5^2=144=12^2

=> AD=12 (cm)

Mà AG là trọng tâm

=>AG=2/3 AD=8 cm

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: ta có: ΔBAD=ΔBHD

=>BA=BH và DA=DH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

=>D nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BD là đường trung trực của AH

Ta có: DA=DH

DH<DC

Do đó: DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

Do đó: ΔDAK=ΔDHC

=>\(\widehat{ADK}=\widehat{HDC}\)

mà \(\widehat{HDC}+\widehat{ADH}=180^0\)(hai góc kề bù)

nên \(\widehat{ADK}+\widehat{ADH}=180^0\)

=>K,D,H thẳng hàng

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH và AK=HC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Ta có: ΔDAK=ΔDHC

=>DK=DC

=>D nằm trên đường trung trực của CK(4)

Từ (3),(4) suy ra BD là đường trung trực của CK

=>BD\(\perp\)CK