Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) gọi 3 số đó là a;b;c ta có :
a:3 = ?(dư 1)
b:3=(?(duw2)
c:3 = ?(dư 0)
=> a+b+c :3 (dư 0)

a) +) Nếu 2 số đó cùng chẵn \(\Rightarrow\)cả 2 số đó đều \(⋮2\)\(\Rightarrow\)Tổng \(⋮2\)(1)
+) Nếu 2 số đó cùng lẻ
Gọi 2 số lẻ lần lượt là \(2a+1\)và \(2b+1\)( \(a,b\inℕ\))
Ta có: \(\left(2a+1\right)+\left(2b+1\right)=4b+2=2\left(2b+1\right)⋮2\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
b) Gọi 3 số tự nhiên liên tiếp là \(a\), \(a+1\), \(a+2\)( \(a\inℕ\))
Ta có: \(a+\left(a+1\right)+\left(a+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)

a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)

a )Gọi 3 số tự nhiên liên tiếp đó là :3k; 3k + 1 ; 3k + 2 ( k thuộc N )
- > Tổng 3 số đó là 3k + ( 3k + 1 ) + ( 3k + 2 ) = 9k +3 = 3 ( 3k + 1 )
Vì 3 ( 3k + 1 ) chia hết cho 3 - > đpcm
b ) Gọi 5 số chẵn liên tiếp là 5k ; 5k + 1 ; 5k + 2 ; 5k + 3; 5k + 4 ( k thuộc N, k chẵn )
- > Tổng 5 số đó là : 5k + ( 5k +1 ) + ( 5k +2 ) + ( 5k + 3 ) + ( 5k + 4 )
= 25 k + 10
25k = 25 . 2m ( k là số chẵn nên đc viết dưới dạng 2m, m thuộc N )
= 50m chia hết cho 10; 10 cũng chia hết cho 10
Mà tổng 2 số chia hết cho 10 sẽ chia hết cho 10
- > đpcm

bài 3
http://data.nslide.com/uploads/resources/620/3533369/preview.swf

b, gọi ba số tự nhiên liên tiếp là n, n+1, n+2 (n thuộc N)
ta có: n+(n+1)+(n+2)
=3n+3
=3(n+1) chia hết cho 3
Vì 3n chia hết cho 3, 3 chia hét cho 3
=>Tổng 3 ố tự nhiên liên tiếp chia hết cho 3
Cứ thé áp dụng cho bài a,c
Nếu e cần c sẽ cho cái bản lưu ý, sau này làm mấy bài này dễ không hà.
a) gọi 2 số tự nhiên liên tiếp là
n ; n+1
n + n + 1 = 2n + 1
vì 2n chia hết cho 2
1 không chia hết cho 2
=> 2n + 1 không chia hết cho 2
vậy tổng 2 số tự nhiên liên tiếp ko chia hết cho 2

a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự

Ta có AEED =dt(AEN)dt(DEN) =hA→MNhD→MN =dt(AMN)dt(DMN)
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy AEED =dt(AMN)dt(DMN) =18 dt(ABC)14 dt(ABC) =12 , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
k mình nha
không nên:
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.

A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3

gọi 2 số đó là a và a + 2
ta có: a + a + 2 = 2a + 2
mà 2a là số chẵn nên 2a + 2 cũng là số chẵn
=> a + a + 2 chẵn
=> đpcm
t i c k nhé!!! 45645676578769
hai số lẻ liên tiếp có dạng 2n + 1 và 2n + 3
tổng hai số lẻ liên tiếp là 2n + 1 + 2n + 3 = 2n + 4
2n + 4 ⋮ 2 ∀ n ϵ N
vậy tổng hai số lẻ liên tiếp chia hết cho 2
b, 3 số tự nhiên liên tiếp có dạng
n , n + 1 , n + 2 với n ϵ N
tổng ba số tự nhiên liên tiếp là
n + n + 1 + n + 2 = 3n + 3 ⋮ 3 ∀ n ϵ N
vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
a) ví dụ: 2 số tự nhiên liên tiếp 7 và 9
thì 7+9 sẽ =16 và 16 là 1 số chẵn
nên 2 số tự nhiên lẻ liên tiếp tổng của chúng bao giờ cũng là 1 số chẵn
b)
Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2
Tổng của 3 số tự nhiên liên tiếp
a+a+1+a+2=(a+a+a)+(1+2)=3a + 3
Vì 3a chia hết cho 3 và 3 chia hết cho 3 nên 3a +3 chia hết cho 3
Vậy tổng của 3 số tự nhiên liên tiếp chia hết cho 3