Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3^9-8=\left(3^3\right)^3-2^3=27^3-2^3=\left(27-2\right)\left(27^2+27\times2+2^2\right)=25\times\left(27^2+27\times2+2^2\right)\)
Vậy A chia hết cho 25 (đpcm)
***
\(B=\left(n+2\right)^2-\left(n-2\right)^2=\left(n+2+n-2\right)\left(n+2-n+2\right)=2n\times4=8n\)
Vậy B chia hết cho 8 (đpcm)
***
\(C=\left(n+7\right)^2-\left(n-5\right)^2=\left(n+7+n-5\right)\left(n+7-n+5\right)=\left(2n+2\right)\times12=12\times2\times\left(n+1\right)=24\times\left(n+1\right)\)
Vậy C chia hết cho 24 (đpcm)
***
Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3
\(D=\left(2k+1\right)^2-\left(2k+3\right)^2=\left(2k+1+2k+3\right)\left(2k+1-2k-3\right)=\left(4k+4\right)\times\left(-2\right)=\left(-2\right)\times4\times\left(k+1\right)=-8\times\left(k+1\right)\)Vậy D chia hết cho 8 (dpcm)
\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)
Bài 1:
a: \(\Leftrightarrow4x\left(x^2-9\right)=0\)
=>x(x-3)(x+3)=0
hay \(x\in\left\{0;3;-3\right\}\)
b: \(\Leftrightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\)
=>(2x-6)(4x-4)=0
=>x=1 hoặc x=3
c: \(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
=>(-2x-4)(12x-4)=0
=>x=1/3 hoặc x=-2
a, Xét: A=(n+2)2-(n-2)2
= (n2+4n+4)-(n2-4n+4)
= n2+4n+4-n2+4n-4
= 8n
Ta có: 8n chia hết cho 8
=> A chia hết cho 8 (đpcm)
b, Xét: B=(n+7)2-(n-5)2
= (n2+14n+49)-(n2-10n+25)
= n2+14n+49-n2+10n-25
= 24n+24
Ta có: 24n chia hết cho 24
24 chia hết cho 24
=> 24n+24 chia hết cho 24
=> B chia hết cho 24 (đpcm)
a, \(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left(n+2-n+2\right)\left(n+2+n-2\right)\)
\(=4.2n=8n\)
Do đó \(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8
b,\(\left(n+7\right)^2-\left(n-5\right)^2\)
\(=n^2+14n+49-\left(n^2-10n+25\right)\)
\(=n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(n+1\right)\)
Do đó \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
Chúc bạn học tốt!!!
a) Ta có : (n + 2)2 - (n - 2)2
= [(n + 2) + (n - 2)][(n + 2) - (n - 2)] (áp dụng hang đẳng thức a2 - b2 = (a + b) (a - b)
= 2n.4
= 8n
Mà n là số tự nhiên => 8n chia hết cho 8
Vậy (n + 2)2 - (n - 2)2 chia hết cho 8
Ta có : (n + 7)2 - (n - 5)2
= [(n + 7) + (n - 5)][(n + 7) - (n - 5]
= (2n + 2).12
= 2(n + 1).12
= 24(n + 1)
Mà n là số nguyên => 24(n + 1) chia hết cho 24
Vậy (n + 7)2 - (n - 5)2 chia hết cho 24
a) (5n - 2)2 - (2n - 5)2
= (5n - 2 - 2n + 5) (5n - 2 + 2n - 5)
= (3n + 3) (7n - 7)
= 21n2 - 21n + 21n - 21
= 21n2 - 21 \(⋮\) 21
Vậy: 21n2 - 21 \(⋮\) 21 vs n \(\in\) Z
b) Gọi 2 số lẻ liên tiếp là 2x + 1 ; 2x + 3
Hiệu bình phương của 2 số lẻ liên tiếp là:
(2x + 1)2 - (2x + 3)2
= (2x + 1 - 2x - 3) (2x + 1 +2x + 3)
= -2.(4x + 4)
= -2.4(x + 1)
= -8(x + 1) \(⋮\) 8
Vậy: hiệu bình phương của 2 số lẻ liên tiếp \(⋮\) 8