K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

\(A=3^9-8=\left(3^3\right)^3-2^3=27^3-2^3=\left(27-2\right)\left(27^2+27\times2+2^2\right)=25\times\left(27^2+27\times2+2^2\right)\)

Vậy A chia hết cho 25 (đpcm)

***

\(B=\left(n+2\right)^2-\left(n-2\right)^2=\left(n+2+n-2\right)\left(n+2-n+2\right)=2n\times4=8n\)

Vậy B chia hết cho 8 (đpcm)

***

\(C=\left(n+7\right)^2-\left(n-5\right)^2=\left(n+7+n-5\right)\left(n+7-n+5\right)=\left(2n+2\right)\times12=12\times2\times\left(n+1\right)=24\times\left(n+1\right)\)

Vậy C chia hết cho 24 (đpcm)

***

Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3

\(D=\left(2k+1\right)^2-\left(2k+3\right)^2=\left(2k+1+2k+3\right)\left(2k+1-2k-3\right)=\left(4k+4\right)\times\left(-2\right)=\left(-2\right)\times4\times\left(k+1\right)=-8\times\left(k+1\right)\)Vậy D chia hết cho 8 (dpcm)

23 tháng 9 2017

\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)

25 tháng 9 2017

Sao có câu a) không vậy bạn?

Bài 1: 

a: \(\Leftrightarrow4x\left(x^2-9\right)=0\)

=>x(x-3)(x+3)=0

hay \(x\in\left\{0;3;-3\right\}\)

b: \(\Leftrightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\)

=>(2x-6)(4x-4)=0

=>x=1 hoặc x=3

c: \(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)

=>(-2x-4)(12x-4)=0

=>x=1/3 hoặc x=-2

a, Xét: A=(n+2)2-(n-2)2

= (n2+4n+4)-(n2-4n+4)

= n2+4n+4-n2+4n-4

= 8n

Ta có: 8n chia hết cho 8

=> A chia hết cho 8 (đpcm)

b, Xét: B=(n+7)2-(n-5)2

= (n2+14n+49)-(n2-10n+25)

= n2+14n+49-n2+10n-25

= 24n+24

Ta có: 24n chia hết cho 24

24 chia hết cho 24

=> 24n+24 chia hết cho 24

=> B chia hết cho 24 (đpcm)

21 tháng 7 2017

a, \(\left(n+2\right)^2-\left(n-2\right)^2\)

\(=\left(n+2-n+2\right)\left(n+2+n-2\right)\)

\(=4.2n=8n\)

Do đó \(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8

b,\(\left(n+7\right)^2-\left(n-5\right)^2\)

\(=n^2+14n+49-\left(n^2-10n+25\right)\)

\(=n^2+14n+49-n^2+10n-25\)

\(=24n+24=24\left(n+1\right)\)

Do đó \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24

Chúc bạn học tốt!!!

21 tháng 7 2017

a) Ta có :  (n + 2)- (n - 2)2 
= [(n + 2) + (n - 2)][(n + 2) - (n - 2)] (áp dụng hang đẳng thức a2 - b2 = (a + b) (a - b)

= 2n.4 

= 8n 

Mà n là số tự nhiên => 8n chia hết cho 8

Vậy (n + 2)- (n - 2)2 chia hết cho 8

Ta có : (n + 7)2 - (n - 5)2 

= [(n + 7) + (n - 5)][(n + 7) - (n - 5]

= (2n + 2).12

= 2(n + 1).12

= 24(n + 1)

Mà n là số nguyên => 24(n + 1) chia hết cho 24

Vậy (n + 7)2 - (n - 5)2 chia hết cho 24 

5 tháng 8 2019

a) (5n - 2)2 - (2n - 5)2

= (5n - 2 - 2n + 5) (5n - 2 + 2n - 5)

= (3n + 3) (7n - 7)

= 21n2 - 21n + 21n - 21

= 21n2 - 21 \(⋮\) 21

Vậy: 21n2 - 21 \(⋮\) 21 vs n \(\in\) Z

b) Gọi 2 số lẻ liên tiếp là 2x + 1 ; 2x + 3

Hiệu bình phương của 2 số lẻ liên tiếp là:

(2x + 1)2 - (2x + 3)2

= (2x + 1 - 2x - 3) (2x + 1 +2x + 3)

= -2.(4x + 4)

= -2.4(x + 1)

= -8(x + 1) \(⋮\) 8

Vậy: hiệu bình phương của 2 số lẻ liên tiếp \(⋮\) 8

5 tháng 8 2019

\(\left(2n+3\right)^2-\left(2n+1\right)^2=4n^2+12n+9-4n^2-4n-1=8n+8=8\left(n+1\right)⋮8\left(\text{đ}pcm\right)\)\(\left(5n-2\right)^2-\left(2n-5\right)^2=25n^2-20n+4-4n^2+20n-25=21n^2-21=21\left(n^2-1\right)⋮21\left(\text{đ}pcm\right)\)