Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3n + 2 - 2n + 4 + 3n + 2n
= 3n(32 + 1) - 2n(24 - 1)
= 3n.10 - 2n.15
= 3n - 1.3.10 - 2n - 1.2.15
= 3n - 1.30 - 2n - 1.30
= 30(3n - 1 - 2n - 1) \(⋮\)30 (đpcm)
Câu a có rồi
b) Bg
Gọi số của đề bài là a (a \(\inℕ^∗\))
Theo đề bài: a = 7x + 3, a = 17y + 12, a = 23z + 7 (x, y, z \(\inℕ\))
=> a + 39 = 7x + 3 + 39 = 7x + 42 = 7x + 7.6 = 7.(x + 6) \(⋮\)7
=> a + 39 = 17y + 12 + 39 = 17y + 51 = 17y + 17.3 = 17.(y + 3) \(⋮\)17
=> a + 39 = 23z + 7 + 39 = 23z + 46 = 23z + 23.2 = 23.(z + 2) \(⋮\)23
=> a + 39 \(⋮\)7; 17; 23
Ta có: 2737 = 7.17.23 (phân tích thừa số nguyên tố)
=> a + 39 \(⋮\)2737
=> a = 2737p - 39
=> a = 2737p - 2737 + 2698
=> a = 2737.(p - 1) + 2698
Vì 2698 < 2737
=> a chia 2737 dư 2698
Vậy số đó chia 2737 dư 2698
Bài 1:
a) ta có: 12-n chia hết cho 8-n
=> 4+8-n chia hết cho 8-n
mà 8-n chia hết cho 8-n
=> 4 chia hết cho 8-n
=> 8-n thuộc Ư(4)= (1;-1;2;-2;4;-4)
nếu 8-n = 1 => n = 7 (TM)
8-n = -1 => n = 9 (TM)
8-n = 2 => n = 6 (TM)
8-n = -2 =>n = 10 (TM)
8-n = 4 => n =4 (TM)
8-n = -4 => n = 12 (TM)
KL: n = ( 7;9;6;10;4;12)
b) ta có: n2 + 6 chia hết cho n2+1
=> n2 + 1 + 5 chia hết cho n2+1
mà n2+1 chia hết cho n2+1
=> 5 chia hết cho n2+1
=> n2+1 thuộc Ư(5)=(1;-1;5;-5)
nếu n2+1 = 1 => n2=0 => n = 0 (Loại)
n2+1 = -1 => n2 = -2 => không tìm được n ( vì lũy thừa bậc chẵn có giá trị nguyên dương)
n2+1 = 5 => n2 = 4 => n=2 hoặc n= -2
n2+1 = -5 => n2 = -6 => không tìm được n
KL: n = (2;-2)
Bài 2:
Gọi số tự nhiên cần tìm là: a
ta có: a chia 4 dư 1 => a-1 chia hết cho 4 ( a chia hết cho 7)
a chia 5 dư 1 => a-1 chia hết cho 5
a chia 6 dư 1 => a-1 chia hết cho 6
=> a-1 chia hết cho 4;5;6 => a-1 thuộc BC(4;5;6)
BCNN(4;5;6) = 60
BC(4;5;6) = (60;120;180; 240;300;360;...)
mà a < 400
=> a-1 thuộc ( 60;120;180;240;300;360)
nếu a-1 = 60 => a=61 (Loại, vì không chia hết cho 7)
a-1 = 120 => a = 121 (loại)
a-1 = 180 => a = 181 (Loại)
a-1 = 240 => a = 241 (Loại)
a-1 = 300 => a = 301 ( TM)
a-1 = 360 => a = 361 (Loại)
KL: số cần tìm là: 301
Gọi b là số tự nhiên đó.
Vì b chia cho 7 dư 5,chia cho 13 dư 4
=>b+9 chia hết cho 7
b+9 chia hết cho 13
=>b+9 chia hết cho 7.13=91
=>b chi cho 91 dư 91-9=82
=>điều phải chứng minh
Giải:
4.Theo đề bài ta có:
\(A=7.a+4 \)
\(=17.b+3 \)
\(=23.c+11 (a,b,c ∈ N)\)
Nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
\(A+150=7.a+4+150=7.a+7.22=7.(a+22)\)
\(=17.b+3+150=17.b+17.9=17.(b+9)\)
\(=23.c+11+150=23.c+23.7=23.(c+7) \)
\(\Rightarrow A+150⋮7;17;23\).Nhưng 7, 17 và 23 là ba số đôi một nguyên tố cùng nhau, suy ra \(A+150⋮7.17.13=2737\)
Vậy \(A+150=2737k\left(k=1;2;3;4;...\right)\)
Suy ra: \(A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k+2587\)
Do \(2587<2737\)
\(\Rightarrow A\div2737\) dư \(2587\)
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
a) Gọi ƯCLN (21n+4 ; 14n+3) =d ( ĐK: d \(\inℕ^∗\))
=> \(\hept{\begin{cases}21n+4\\14n+3\end{cases}}\)\(⋮\)d
=> \(\hept{\begin{cases}2.\left(21n+4\right)\\3.\left(14n+3\right)\end{cases}}\)\(⋮\)d
=>\(\hept{\begin{cases}42n+8\\42n+9\end{cases}}\)\(⋮\)d
=> (42n+9) - (42n+8) \(⋮\)d
42n+9 - 42n - 8 \(⋮\)d
( 42n - 42n) + ( 9 - 8) \(⋮\)d
=> 1\(⋮\)d
=> d = 1
=> ƯCLN ( 21n+4 ; 14n+3 ) = 1
Vậy phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản
b) mk k bt làm
Chúc bn hok tốt!!
Nếu đúng thì tk mk nha
\(\text{Gọi ƯCLN( 21n + 4 , 14n + 3 ) là d}\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\text{Phân số }\frac{21n+4}{14n+4}\text{ là phân số tối giản}\)
thanks