K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
2 tháng 11 2020

a) \(A=\left(x+4\right)\left(x-4\right)-2x\left(x+3\right)+\left(x+3\right)^2\)

\(=x^2-16-2x^2-6x+x^2+6x+9\)

\(=-7\)

b) \(B=x^3+y^3+xy=\left(x+y\right)^3-3xy\left(x+y\right)+xy=\left(x+y\right)^3-3xy\left(x+y-\frac{1}{3}\right)\)

Thế \(x+y=\frac{1}{3}\) vào biểu thức trên ta được: \(B=\left(\frac{1}{3}\right)^3-3\times xy\times\left(\frac{1}{3}-\frac{1}{3}\right)=\frac{1}{27}\)

c) \(\left(ax+b\right)\left(x^2-cx+2\right)=ax^3+\left(b-ac\right)x^2+\left(2a-bc\right)x+2b\)

Đồng nhất hệ số ta được: 

\(a=1,b-ac=1,2a-bc=0,2b=-2\)

Từ đây ta tính được: \(\hept{\begin{cases}a=1\\b=-1\\c=-2\end{cases}}\)

2 tháng 11 2020

a) A = ( x + 4 )( x - 4 ) - 2x( x + 3 ) + ( x + 3 )2

= x2 - 4 - 2x2 - 6x + x2 + 6x + 9

= 5 ( không phụ thuộc vào x )

=> đpcm

b) B = x3 + y3 + xy

= ( x + y )3 - 3xy( x + y ) + xy

= ( 1/3 )3 - 3xy.1/3 + xy

= 1/27 - xy + xy 

= 1/27

Vậy B = 1/27 khi x + y = 1/3

c) ( ax + b )( x2 - cx + 2 ) = x3 + x2 - 2

⇔ ax3 - acx2 + 2ax + bx2 - bcx + 2b = x3 + x2 - 2

⇔ ax3 + ( b - ac )x2 + ( 2a - bc )x + 2b = x3 + x2 - 2

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}a=1\\b-ac=1\\2a-bc=0\end{cases}};2b=-2\)=> \(\hept{\begin{cases}a=1\\b=-1\\c=-2\end{cases}}\)

Vậy ...

6 tháng 10 2020

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)

=> đpcm

b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)

\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)

\(B=\frac{2}{27}\)

=> đpcm

c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)

\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)

\(C=0\)

=> đpcm

29 tháng 6 2018

\(a\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)

\(=6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)-18x+12\)

\(=6x^2+21x-2x-7-6x^2+5x-6x-5-18x+12\)

\(=0\left(đpcm\right)\)

\(b,\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)

\(=0\left(đpcm\right)\)

7 tháng 9 2019

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

12 tháng 7 2018

\(B=x^3-y^3-\left(x^2+xy+y^2\right)\left(x-y\right)\)

\(\Rightarrow B=x^3-y^3-\left(x^3-y^3\right)\)

\(\Rightarrow B=0\)

\(\Rightarrow B\)ko phụ thuộc vào g/t của biến 

\(C=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)

\(\Rightarrow C=3x^2+15x-\left(3x^2+18x-3x-18\right)+8\)

\(\Rightarrow C=3x^2+15x-3x^2-15x+18+8\)

\(\Rightarrow C=26\)

Vậy \(C\)ko phụ thuộc vào giá trị của biến 

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

Bài 1: Rút gọn :A =(x2 - 1)\(\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)                                                  B = \(\left(y-\frac{x^2+y^2}{x+y}\right).\left(\frac{2y}{x}-\frac{4y}{x-y}\right)\)C = \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)                         D = \(\left(\frac{x^2}{y^2}+\frac{y}{x}\right):\left(\frac{x}{y^2}-\frac{1}{y}+\frac{1}{x}\right)\)Bài 2 :a) Tìm giá trị nhỏ...
Đọc tiếp

Bài 1: Rút gọn :

A =(x- 1)\(\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)                                                  B = \(\left(y-\frac{x^2+y^2}{x+y}\right).\left(\frac{2y}{x}-\frac{4y}{x-y}\right)\)

C = \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)                         D = \(\left(\frac{x^2}{y^2}+\frac{y}{x}\right):\left(\frac{x}{y^2}-\frac{1}{y}+\frac{1}{x}\right)\)

Bài 2 :

a) Tìm giá trị nhỏ nhất của A = x2 + 4x -7; B = 2x2 - 3x +5; C = x4 - 3x2 + 1

b) Tìm giá trị lớn nhất của A = -x2 + 6x - 7; B = -3x-x + 4; C = -2x4 - 4x2 + 3

Bài 3:

a) Cho a + b = 7; ab = 10. Tính A = a2 + b2; B = a3 + b3

b) Chứng minh -x2 + x - 1 < 0 với mọi số thực x

c) Chứng minh x2 + xy + y2 + 1 > 0 với mọi số thực x và y

---> Mình đang cần gấp, các bạn giúp mình với :( Cám ơn ạ

 

1
22 tháng 6 2018

Đăng từng bài thôi nha bạn 

Bài 1 : Năm nay mới lên lớp 8 -_- 

Bài 2 : 

\(a)\) 

* Câu A : 

\(A=x^2+4x-7\)

\(A=\left(x^2+4x+4\right)-11\)

\(A=\left(x+2\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé ) 

Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)

* Câu B : 

\(B=2x^2-3x+5\)

\(2B=4x^2-6x+10\)

\(2B=\left(4x^2-6x+1\right)+9\)

\(2B=\left(2x-1\right)^2+9\ge9\)

\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)

* Câu C : 

\(C=x^4-3x^2+1\)

\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)

\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)

Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)

Chúc bạn học tốt ~ 

ĐỀ KIỂM TRA HKI:NĂM HỌC:2016_2017MÔN:TOÁNBài 1:Thực hiện phép tínha) 3x2 (x3 + 3x2 - 2x + 1) - 3x3b) (x - 4)(2x + 3)Bài 2:Phân tích các đa thức sau thành nhân tửa) 5x3 + 10x2 + 5xb) x(2x - 7) - 6x + 21c) x2 + 2xz - 49 + z2d) x2 + 10x + 21Bài 3:Tìm xa) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15b) 3x(x - 5) - 6084(x - 5) = 0Bài 4:a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)b)...
Đọc tiếp

ĐỀ KIỂM TRA HKI:

NĂM HỌC:2016_2017

MÔN:TOÁN

Bài 1:Thực hiện phép tính

a) 3x2 (x3 + 3x2 - 2x + 1) - 3x3

b) (x - 4)(2x + 3)

Bài 2:Phân tích các đa thức sau thành nhân tử

a) 5x3 + 10x2 + 5x

b) x(2x - 7) - 6x + 21

c) x2 + 2xz - 49 + z2

d) x2 + 10x + 21

Bài 3:Tìm x

a) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15

b) 3x(x - 5) - 6084(x - 5) = 0

Bài 4:

a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:

(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)

b) Tính:

\(\frac{x+2}{x+3}\)+\(\frac{1-x}{x+3}\) - \(\frac{6x}{\left(x-3\right)\left(x+3\right)}\)

c) Chứng minh biểu thức sau không phụ thuộc vào biến x và y:

\(\frac{y}{x-y}\) - \(\frac{x^3-xy^2}{x^2+y^2}\)\(\left[\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right]\)

Bài 5:

Cho hình bình hành ABCD có BC =2AB và Â=600 .Gọi E,F theo thứ tự là trung điểm của BC và AD. Gọi I là điểm đối xứng với A qua B.

a) Tứ giác ABEF là hình gì ? Vì sao ?

b) Chứng minh tam giác ADI là tam giác đều .

c) Tứ giác AIEF là hình gì ? Vì sao ?

d) Tứ giác BICD là hình gì ? Vì sao ?

...............................................................HẾT.............................................................

 

3
20 tháng 12 2016

bạn à. ko có bài 1 điểm à

21 tháng 12 2016

công nhận chẳng thấy bài 1đ đâu.

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)