K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

Ta có : 10322020 - 122016

= (12.86)2020 - 122016

= 122020.862020 - 122016

= 122016(24.862020 - 1)

Vì 862020 = (862)1010 = (...6)1010 = (...6)

=> 24.862020 - 1 = 16.(...6) - 1 = (....6) - 1 = (...5)

Khi đó 122016.(...5) = 122015.12.(...5) = 122015.(...0) \(⋮\)10 (đpcm)

29 tháng 11 2018

10 bn nhanh nhất k nha

29 tháng 11 2018

\(a,\)Ta có:

\(A=3+3^2+3^3+...+3^{10}\)

    \(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

    \(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

    \(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)

    \(=4\left(3+3^3+...+3^9\right)⋮4\)

\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)

\(\Rightarrow\)ĐPCM

21 tháng 12 2017

22020 - 22016

= 22016 . ( 2 - 1 )

= 22016 . 15 chia hết cho 15

Vậy 22020 - 22016 chia hết cho 15

21 tháng 12 2017

Ta có :

22020 - 22016 

= 22016 . ( 24 - 1 )

= 22016 . 15 \(⋮\)15

Vậy ...

22 tháng 12 2016

Giải:(bài này là đáp án đúng,cô giáo chữa rồi) đề thi HK1

Ta thấy 2015^2016 là một số lẻ suy ra 2015^2016-1 là một số chẵn và 2015^2016+1 cũng là số chẵn

suy ra 2015^2016-1 chia hết cho 2

2015^2016 +1 chia hết cho 2

Suy ra (2015^2016-1)(2016^2016+1) chia hết cho(2.2

Hay A chia hết cho 4

2 Xét 2 STN liên tiếp

(2015^2016-1),2015^2016,(2015^2106+1)

Trong ba số tự nhiên sẽ có một số chia hết cho 3

Ta thấy 2015 ko chia hết cho 3 suy ra 2015^2016 ko chia hết cho 3

Vậy 1 trong 2 số (2015^2016-1) ;(29015^2016+1) sẽ phải chia hết cho 2 suy ra A chia hết cho 3

mà (3,4) là cặp số nguyên tố cùng nhau nên A chia hết cho 3

MÌnh ở Huyện thuận thành xã hoài thượng hân hạnh làm quen

14 tháng 11 2017

4 đâu phải số nguyên tố số 12 cũng vậy

2 tháng 12 2018

ta có: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 4 nên A chia hết cho 4

mặt khác: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 12 nên A chia hết cho 12

3 tháng 12 2018

đúng rồi

22 tháng 10 2016

a) Ta có: \(10^{2017}-1=100...0\)(2017 chữ số 0) - 1 = 99...9 (2017 chữ số 9)

Do \(99...99⋮9\Rightarrow10^{2017}-1⋮9\). Mà số chia hết cho 9 thì chia hết cho 3.

b) Ta có: \(10^{2020}+8=100...0\)(2020 chữ số 0) +8

Ta thấy tổng của số trên là \(1+0+0+...+0+8=9⋮9\Rightarrow10^{2020}+8⋮9\) mà số chia hết cho 9 thì chia hết cho 3.

c) Ta có: \(10^{2016}+8=10...0\)(2016 chữ số 0) + 8= \(10...008\)

Tổng của số trên là 9 nên số trên chia hết cho 9.

Ta lại có 3 chữ số tận cùng của sô trên chia hết cho 8 => số trên chia hết cho 8

=> Số trên chia hết cho 8.9=72

 

 

10 tháng 2 2019

\(A,\)\(S=\left(3+3^2\right)+\left(3+3^2\right)3^2+...+\left(3+3^2\right)3^{2018} \)

\(\Rightarrow S=9\left(1+3^2+...+3^{2018}\right)\)

\(\Rightarrow S⋮9\)

\(B,\)\(S=3+3^2+3^3+\left(3+3^2+3^3\right)3^3+...\left(3+3^2+3^3\right)3^{2017}\)

\(S=39+39.3^3+...+39.3^{2017}\)

Nhưng xét lại thì thấy 2017 không chia hết cho 3 nên câu b có lẽ sai đề =)))))

\(C,\)\(S=\left(1+3+3^2+3^3\right).3+\left(1+3+3^2+3^3\right).3^4+...+\left(1+3+3^2+3^3\right).3^{2017}\)

\(S=40.3+40.3^4+...+40.3^{2017}\)

\(Vậy...\)