Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BDT Bu-nhi-a-cốp-xki:
\(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)=ab\\ \Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Đẳng thức xảy ra khi: \(\dfrac{c}{b-c}=\dfrac{a-c}{c}\)
\(\Rightarrow c^2=\left(b-c\right)\left(a-c\right)\\ \Rightarrow c^2=ab-ac-bc+c^2\\ \Rightarrow ab-ac-bc=0\)
a) vì ab > 0 nên chia cả hai vế Bất đẳng thức cho \(\sqrt{ab}\) ta được
\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le1\)
Áp dụng Bất đẳng thức Cauchy cho hai số
\(\Rightarrow\sqrt{\dfrac{c}{b}\left(\dfrac{a-c}{a}\right)}+\sqrt{\dfrac{c}{a}\left(\dfrac{b-c}{b}\right)}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)=1\)
vậy nên ta có đpcm
\(\frac{2005}{\sqrt{2006} }+\frac{2006}{\sqrt{2005} }>\sqrt{2005}+\sqrt{2006} \)
<=>\(2005\sqrt{2005}+2006\sqrt{2006}>2005\sqrt{2006}+2006\sqrt{2005} \)
<=>\(\sqrt{2006}<\sqrt{2005} \)
Đặt \(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\) = A
Ta có A^2 = \(\left(\sqrt{\left(a-c\right).c}+\sqrt{c.\left(b-c\right)}\right)^2\)
Áp dụng bđt bunhiacopxki ta có A^2 <= \(\left(\sqrt{a-c}^2+\sqrt{c^2}\right).\left(\sqrt{c^2}+\sqrt{b-c^2}\right)\)
= (a-c+c).(c+b-c) = ab
<=> A<= \(\sqrt{ab}\)=> ĐPCM
Dấu"=" <=> a-c = c và c = b-c
<=> a=b=2c>0
Ta có bất đẳng thức bunhicopxki
\(\sqrt{ax}+\sqrt{by}\le\sqrt{\left(a+x\right)\left(b+y\right)}\)
Áp dụng vào ta có:
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{\left(a-c+c\right)\left(b-c+c\right)}\le\sqrt{ab}\)
Dấu bằng xảy ra khi a-c = b-c
tìm trc khi hỏi Câu hỏi của Hoàng Thiên - Toán lớp 9 - Học toán với OnlineMath
Bài 1: (không dùng Cô-si) Bình phương hai vế, ta được:
\(c\left(a-c\right)+c\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(ac-2c^2+bc+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(0\le\left(ab-ac-bc+c^2\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(a-c\right)\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(\sqrt{\left(a-c\right)\left(b-c\right)}-c\right)^2\)(đúng)
Vậy BĐT đúng. Xảy ra khi \(a=b=2c\)
a) Gõ link này nha: http://olm.vn/hoi-dap/question/1078496.html