\(\frac{CN}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

A B C D N M P Q

a) Ta có : \(\frac{S_{APQ}}{S_{AMN}}=\frac{S_{APQ}}{S_{APN}}.\frac{S_{APN}}{S_{AMN}}=\frac{AQ}{AN}.\frac{AP}{AM}\)

Ta cần tính tỉ số \(\frac{AQ}{AN},\frac{AP}{AM}\)

Thật vậy, ta có : \(\frac{AQ}{QN}=\frac{AB}{DN}=3\Rightarrow\frac{AQ}{AQ+QN}=\frac{3}{4}\Rightarrow\frac{AQ}{AN}=\frac{3}{4}\)

\(\frac{AP}{PM}=\frac{AD}{BM}=2\Rightarrow\frac{AP}{AP+PM}=\frac{2}{3}\Rightarrow\frac{AP}{AM}=\frac{2}{3}\)

Do đó : \(\frac{AQ}{AN}.\frac{AP}{AM}=\frac{3}{4}.\frac{2}{3}=\frac{1}{2}\)

Vậy \(S_{APQ}=\frac{1}{2}.S_{AMN}\)

b) Ta có : \(\frac{CN}{ND}=2.\frac{BM}{MC}\)

đặt \(\frac{BM}{MC}=k\)thì \(\frac{CN}{ND}=2k\)

Đặt MC = x thì BM = kx . đặt ND = y thì CN = 2ky

ta có : \(\frac{AP}{PM}=\frac{AD}{BM}=\frac{x+kx}{kx}=\frac{k+1}{k}\Rightarrow\frac{AP}{AP+PM}=\frac{k+1}{2k+1}\)

\(\Rightarrow\frac{AP}{AM}=\frac{k+1}{2k+1}\)                                                               ( 1 )

Mặt khác, \(\frac{AQ}{QN}=\frac{AB}{DN}=\frac{2k+1}{1}\Rightarrow\frac{AQ}{AQ+QN}=\frac{2k+1}{2k+2}\Rightarrow\frac{AQ}{AN}=\frac{2k+1}{2k+2}\)           ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\frac{AP}{AM}.\frac{AQ}{AN}=\frac{k+1}{2k+1}.\frac{2k+1}{2k+2}=\frac{1}{2}\)

Vậy \(S_{APQ}=\frac{1}{2}.S_{AMN}\)

8 tháng 2 2022

jjjjjjjjjj

29 tháng 10 2018

Gọi M là trung điểm BC

+) vecto AI=vecto IG=vecto GM

+) vecto AI=1/3vecto AM=1/3(vecto CM-vecto CA)=2/3vecto CB-1/3vecto CA

+) vecto AK=1/5vecto AB=1/5vecto CB-1/5vectoCA

+) vecto CK=vecto CA+vecto AK=vecto CA+1/5vecto AB

=vecto CA+1/5vecto CB-1/5vecto CA=1/5vecto CB+4/5vecto CA

+)vecto CI=vecto CA+vecto AI= vecto CA+1/3vecto AM

=vecto CA+1/3vecto AC+1/6vecto CB=2/3vecto CA+1/6vecto CB

b/

+) vecto CI =2/3vecto CA+1/6vecto CB=5(4/30vecto CA+1/30vecto CB)

+) vecto CK=6(4/30vecto CA+1/30vecto CB)

do đó 1/5vecto CI=1/6vecto CK

Nên C,I,K thẳng hàng.