K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

a) Từ đồ thị hàm số (H), để có hình (H’) nhận y = 2 là tiệm cận ngang và x = 2 là tiệm cận đứng, ta tịnh tiến đồ thị (H) song song với trục Oy lên trên 3 đơn vị, sau đó tịnh tiến song song với trục Ox về bên phải 3 đơn vị, ta được các hàm số tương ứng sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Lấy đối xứng hình (H’) qua gốc O, ta được hình (H’’) có phương trình là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

GV
25 tháng 4 2017

a) (H) có các đường tiệm cận là:

- Tiệm cận ngang y = -1

- Tiệm cận đứng x = -1

hai đường tiềm cận này cắt nhau tại điểm I(-1; -1).

Hình (H') có hai đường tiệm cận cắt nhau tại I'(2;2) nên ta cần phép tịnh tiến theo vector \(\overrightarrow{II'}=\left(2-\left(-1\right);2-\left(-1\right)\right)=\left(3;3\right)\)

b) Hình (H') có phương trình là:

\(y+3=\dfrac{3-\left(x+3\right)}{\left(x+3\right)+1}\) hay là \(y=\dfrac{-4x-12}{x+4}\)

Hình đối xứng với (H') qua gốc tọa độ có phương trình là:

\(-y=\dfrac{-4\left(-x\right)-12}{-x+4}\) hay là: \(y=\dfrac{4x-12}{-x+4}\)

11 tháng 2 2018

2 tháng 12 2019

Từ đồ thị hàm số (H), để có hình (H’) nhận y = 2 là tiệm cận ngang và x = 2 là tiệm cận đứng, ta tịnh tiến đồ thị (H) song song với trục Oy lên trên 3 đơn vị, sau đó tịnh tiến song song với trục Ox về bên phải 3 đơn vị, ta được các hàm số tương ứng sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12 

Giải sách bài tập Toán 12 | Giải sbt Toán 12

NV
8 tháng 8 2020

1.

\(\lim\limits_{x\rightarrow\infty}\frac{3x-2}{x+1}=3\Rightarrow y=3\) là tiệm cận ngang

2.

\(\lim\limits_{x\rightarrow2}\frac{-2x}{x-2}=\infty\Rightarrow x=2\) là tiệm cận đứng

3.

\(\lim\limits_{x\rightarrow\infty}\frac{x-2}{x^2-1}=0\Rightarrow y=0\) là tiệm cận ngang

4.

\(\lim\limits_{x\rightarrow\infty}\frac{x-1}{x^2-x}=0\Rightarrow y=0\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow0}\frac{x-1}{x^2-x}=\infty\Rightarrow x=0\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow1}\frac{x-1}{x^2-x}=1\) hữu hạn nên \(x=1\) ko phải tiệm cận đứng

ĐTHS có 2 tiệm cận

22 tháng 11 2016

1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy

2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15

3,

*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)

*) 2+3=8 hay 2.(2+3)-2=8

4+5=32 hay 4.(4+5)-4=32

5+8=60 hay 5.(5+8)-5=60

6+7=72 hay 6.(6+7)-6=72

7+8= 7.(7+8)-7=98

 

23 tháng 11 2016

HACK

23 tháng 5 2017

b) Tiệm cận đứng là đường thẳng \(x=3\)

Tiệm cận ngang là đường thẳng \(y=1\)

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

NV
29 tháng 9 2020

ĐKXĐ: \(0< x\le2\)

Miền xác định của hàm không chứa vô cùng nên hàm ko có tiệm cận ngang

\(\lim\limits_{x\rightarrow0^+}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=-\infty\) nên \(x=0\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=\infty\) nên \(x=1\) là tiệm cận đứng