\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

P/s: Câu c sủa đề đi, như đề cũ không chứng minh được đâu

\(a)\) \(y=f\left(x\right)=4x^2-5\)

\(\Leftrightarrow f\left(3\right)=4.3^2-5=31\)

\(\Leftrightarrow f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)

\(b)\) \(f\left(x\right)=-1\)

\(\Leftrightarrow4x^2-5=-1\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

\(c)\) Đặt \(f\left(x\right)=kx\Leftrightarrow-f\left(x\right)=-kx\)

Và \(f\left(-x\right)=k\left(-x\right)=-kx\)

Do đó chứng minh được \(-f\left(x\right)=f\left(-x\right)\)

28 tháng 3 2017

Đặt g(x) = f(x) – f(-x), thế thì g(x) là đa thức dạng: g(x) = ax^3 + bx^2 + cx + d. Mặt khác, ta có:

g(1) = f(1) – f(-1) = 0

g(-1) = f(-1) – f(1) = 0

g(2) = f(2) – f(-2) = 0

g(-2) = f(-2) – f(2) = 0

Như vậy g(x) là đa thức bậc không quá ba mà có bốn nghiệm khác nhau 1, -1, 2, -2 điều này là không thể. Vậy phải có a = 0; b = 0; c = 0; d = 0.

Hay f(x) = f(-x) với \(\forall\)x.

27 tháng 8 2017

Bn chép mạng à

3 tháng 4 2020

a) Với x1 = x2 = 1 

\(\Rightarrow f\left(1\right)=f\left(1.1\right)\) 

\(\Rightarrow f\left(1\right)=f\left(1\right).f\left(1\right)\) 

\(\Rightarrow f\left(1\right).f\left(1\right)-f\left(1\right)=0\) 

\(\Rightarrow f\left(1\right).\left[f\left(1\right)-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\) 

Mà \(f\left(x\right)\ne0\) ( với mọi \(x\in R\) \(;\) \(x\ne0\) )

\(\Rightarrow f\left(1\right)\ne0\)

\(\Rightarrow f\left(1\right)-1=0\) 

\(\Rightarrow f\left(1\right)=1\)

b) Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)

\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)

\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=1\)

\(\Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)

\(\Rightarrow f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\) 

DD
7 tháng 11 2021

\(\left(x+1\right)f\left(x+2\right)=\left(x-4\right)f\left(x-1\right)\)(1) 

Thế \(x=4\)vào (1) ta được: 

\(\left(4+1\right)f\left(4+2\right)=\left(4-4\right)f\left(4-1\right)\Leftrightarrow5f\left(6\right)=0\Leftrightarrow f\left(6\right)=0\)

Thế \(x=-1\)vào (1) ta được: 

\(\left(-1+1\right)f\left(-1+2\right)=\left(-1-4\right)f\left(-1-1\right)\Leftrightarrow f\left(-2\right)=0\)

Vậy có ít nhất hai giá trị là \(x=6\)và \(x=-2\)để \(f\left(x\right)=0\).

7 tháng 8 2017

Với x=-1 => \(f\left(-1\right)+\left(-1\right).f\left(1\right)=-1+1\Leftrightarrow f\left(-1\right)-f\left(1\right)=0\Leftrightarrow f\left(-1\right)=f\left(1\right)\)

Với x=1 => \(f\left(1\right)+1.f\left(-1\right)=1+1\Leftrightarrow f\left(1\right)+f\left(-1\right)=2\)mà f(1)=f(-1)

=>f(1)=1

2 tháng 11 2017

avt741127_60by60.jpg Bubble Princess ơi, bạn Trà My đúng rồi, tk bạn ấy nha ! Thanks !

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

\(f(1)=f(-1)\)

\(\Leftrightarrow a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\)

\(\Leftrightarrow 2(a_3+a_1)=0\Leftrightarrow a_3+a_1=0(1)\)

\(f(2)=f(-2)\)

\(\Leftrightarrow 16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\)

\(\Leftrightarrow 16a_3+4a_1=0\Leftrightarrow 4a_3+a_1=0(2)\)

Từ \((1);(2)\Rightarrow a_3=a_1=0\)

Do đó:
\(f(x)=a_4x^4+a_2x^2+a_0\)

\(\Rightarrow f(-x)=a_4(-x)^4+a_2(-x)^2+a_0=a_4x^4+a_2x^2+a_0\)

Vậy $f(x)=f(-x)$.

20 tháng 8 2019

Mí bạn giúp mình với mình đang cần làm gấp X ((