Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\begin{cases}x=6\\y=14\end{cases}\)
b) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
=> \(\begin{cases}x=10\\y=4\end{cases}\)
a) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}x=2.3=6\\y=2.7=14\end{cases}\)
Vậy x = 6; y = 14
b) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}x=2.5=10\\y=2.2=4\end{cases}\)
Vậy x = 10; y = 4
nguyen tran phuong vy: vt sai kìa, phải là I don't know
Cho x/4=y/7=k
Suy ra x.y/4.7=k^2
112/28=k^2
k^2=4 => k=2
mà x/4=k=2 => x=2.4=8
y/7=k=2 => y=2.7=14
a) x = 6 ; y = 15.
x = -6 ; y = -15.
b) x = 2 ; y = 2.
x = -2 ; y = -2.
\(\frac{4}{5x}=\frac{1}{-8}\)
\(\Rightarrow5x=4.\left(-8\right)\)
\(\Rightarrow5x=-32\)
\(\Rightarrow x=\frac{-32}{5}\)
vay \(x=\frac{-32}{5}\)
\(\frac{x}{8}=\frac{2}{x}\)
\(\Rightarrow x^2=2.8\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x=4\)
vay \(x=4\)
Câu a,câu d mk làm rồi nhé
b, Ta có : \(\frac{x}{5}=\frac{y}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{25}=\frac{1}{4}\\\frac{y^2}{9}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=\frac{25}{4}\\y^2=\frac{9}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\pm\frac{5}{2}\\y=\pm\frac{3}{2}\end{cases}}\)
c, Đặt : \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
=> x.y = 2k.3k = 6k2
=> 6k2 = 54
=> k2 = 9
=> k = \(\pm3\)
Như vậy ta tìm được x = 6 , y = 9 hay x = -6 , y = -9
a) Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow x=15.2=30;\)
\(y=20.2=40;\)
\(z=28.2=56\)
Vậy x = 30; y = 40 ; z = 56
b) Đặt \(\frac{x}{5}=\frac{y}{3}=k\)
\(\Rightarrow x=5k;y=3k\)
Khi đó \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Rightarrow5^2.k^2-3^2.k^2=4\)
\(\Rightarrow25.k^2-9.k^2=4\)
\(\Rightarrow k^2.\left(25-9\right)=4\)
\(\Rightarrow k^2.16=4\)
\(\Rightarrow k^2.4^2=2^2\)
\(\Rightarrow k^2=\left(\frac{1}{2}\right)^2\)
\(\Rightarrow k=\pm\frac{1}{2}\)
Nếu \(k=\frac{1}{2}\Rightarrow x=5.\frac{1}{2}=\frac{5}{2};y=3.\frac{1}{2}=\frac{3}{2}\)
Nếu \(k=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}.5=-\frac{5}{2};y=-\frac{1}{2}.3=-\frac{3}{2}\)
Vậy các cặp (x;y) thỏa mãn là : \(\left(\frac{5}{2};\frac{3}{2}\right);\left(-\frac{5}{2};-\frac{3}{2}\right)\)
c) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k;y=3k\)
Khi đó xy = 54
<=> 2k.3k = 54
=> 6.k2 = 54
=> k2 = 9
=> k2 = 32
=> \(k=\pm3\)
Nếu k = 3 => x = 2.3 = 6 ; y = 3.3 = 9
Nếu k = - 3 => x = 2.(-3) = 6 ; y 3.(-3) = 9
Vậy các cặp số (x;y) thỏa mãn là : (6;9) ; (-6;-9)
A:
Đặt \(k=\frac{x}{4}=\frac{y}{7}\)
Ta có :
\(\frac{x}{4}=\frac{y}{7}\Rightarrow\hept{\begin{cases}x=k.4\\y=k.7\end{cases}}\)
Theo bài ra ta có :
\(x.y=112\Rightarrow k.4.k.7=112\Rightarrow28.k^2=112\Rightarrow k^2=4\Rightarrow k=\text{±}2\)
TH1 : k=2
=> \(\hept{\begin{cases}x=2.3\\y=2.7\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}}\)
Th2 : k=-2
\(\Rightarrow\hept{\begin{cases}x=-2.3\\y=-2.7\end{cases}\Rightarrow\hept{\begin{cases}x=-6\\y=-14\end{cases}}}\)
còn câu b thì trong sách có đó