\(\frac{a+b}{b}\)=\(\frac{c+d}{d}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

a,Cách 1: \(\frac{a+b}{b}=\frac{c+d}{d}\)

=> (a+b)d = b(c+d)

=> ad + bd = bc + bd

=> ad = bc 

=> \(\frac{a}{b}=\frac{c}{d}\)

Cách 2:

\(\frac{a+b}{b}=\frac{c+d}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a}{b}=\frac{c}{d}\)

b,\(\frac{a}{a-2b}=\frac{c}{c-2d}\Rightarrow a\left(c-2d\right)=c\left(a-2b\right)\Rightarrow ac-2ad=ac-2bc\Rightarrow-2ad=-2bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)

10 tháng 11 2018

\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\\ \Leftrightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow ac-2ad+bc-2bd=ac+ad-2bc-2bd\)

\(\Leftrightarrow3bc=3ad\)

\(\Leftrightarrow bc=ad\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

10 tháng 11 2018

\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

=>ac-2ad+bc-2bd=ca-2bc+da-2bd

=>ac-2ad+bc-2bd-ca+2bc-da+2bd=0

=>-3ad+3bc=0

=>3ad=3bc

=>ad=bc

=>a/b=c/d

6 tháng 9 2020

a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)

\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)

\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)

b) Chứng minh tương tự 

6 tháng 9 2020

ko biet nghen

20 tháng 10 2018

Q= (Q+1) -(1-Q)

good luck!

20 tháng 8 2016

Câu 1:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1.\)(T/c dãy tỷ số bằng nhau)

Suy ra:

\(\frac{a}{b}=1\Rightarrow a=b\)

\(\frac{b}{c}=1\Rightarrow b=c\)

\(\frac{c}{d}=1\Rightarrow c=d\)

\(\frac{d}{a}=1\Rightarrow d=a\)

Theo t/c bắc cầu => \(a=b=c=d\)

Câu 2: Do \(a=b=c=d\) nên

\(M=\frac{a+2a}{a}+\frac{b+2b}{b}+\frac{c+2c}{c}+\frac{d+2d}{d}=3+3+3+3=12\)

20 tháng 8 2016

Ta dễ dàng thấy b= d2

a2 = c

b= ac

Từ đó thấy a = b = c = d

Từ đó ta có M = 3 + 3 +  3 + 3 = 12

2 tháng 6 2016

OK:

Trừ 1 ở mỗi tỉ số,ta có:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1\)\(=\frac{a+b+c+2d}{d}-1\)

=>\(\frac{2a+b+c+d-a}{a}=\frac{a+2b+c+d-b}{b}\)\(=\frac{a+b+2c+d-c}{c}=\frac{a+b+c+2d-d}{d}\)

=>\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Do đó a=b=c=d

=>\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\)\(\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

Vậy M=4

 

1 tháng 6 2016

Mik thấy đề đúng màlolang

 

26 tháng 11 2016

Ta có: a/b=b/c=c/d=d/a áp dụng tính chất dãy tỉ số bằng nhau ta được:

a/b=b/c=c/d=d/a=(a+b+c+d)/(a+b+c+d)=1

Do đó: a/b=1 suy ra a=b (1) ; b/c=1 suy ra b=c (2) ; c/d=1 suy ra c=d (3) ; d/a=1 suy ra d=a (4)

Từ (1),(2),(3),(4) ta được: a=b=c=d

Suy ra:P=(2a-a)/(a+a)+(2a-a)/(a+a)+(2a-a)/(a+a)+(2a+a)/(a+a)

=4.a/2a=4.1/2=2

Vậy P=2

26 tháng 11 2016

thanks ban nha