K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

a)

\(B=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3B=3\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+3^{100}\right)\)

\(\Rightarrow2B=3^{101}-3\)

Mà \(2B+3=3^n\)

\(\Rightarrow3^{101}-3+3=3^n\)

\(\Rightarrow3^{101}=3^n\)

\(\Rightarrow n=101\)

Vậy \(n=101\)

7 tháng 8 2019

a)

B = 3 + 32 + 33 + ... + 3100

3B = 32 + 33 + 34 + ... + 3101

3B - B = 3101 - 3

⇒ 2B = 3101 - 3

⇒ 2B + 3 = 3101 - 3 + 3

⇒ 3n = 3101

⇒ n = 101

Vậy n = 101

26 tháng 3 2016

2555555555555555555555555

4 tháng 10 2016

Bài 1:

a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016

7A = 7 + 72 + 73 + 74 + ... + 72017

7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)

6A = 72017 - 1

\(A=\frac{7^{2017}-1}{6}\)

b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017

4B = 4 + 42 + 43 + 44 + ... + 42018

4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)

3B = 42018 - 1

\(B=\frac{4^{2018}-1}{3}\)

Bài 2:

a) Ta có: \(14\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)

b) Ta có: \(2015\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)

4 tháng 10 2016

Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha

 

3 tháng 12 2018

a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014

A = ( 2014 + 20142 ) + ( 2014+ 20144 ) + ..... + ( 20142013 + 20142014 )

A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )

A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015

A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015

b) Ta có 6 chia hết cho n - 1

=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }

Nếu n - 1 = 1 => n = 2 (tm)

Nếu n - 1 = 2 => n = 3 (tm)

Nếu n - 1 = 3 => n = 4 (tm)

Nếu n - 1 = 6 => n = 7 (tm)

Vậy n thuộc { 2 ; 3 ; 4 ; 7 }

Mk ko chắc là đúng

hok tốt

17 tháng 6 2016

Bài 1: A = 23 + 43 + 63 + ... + 983 + 1003 = 23*(13 + 23 + 33 + ... + 493 + 503) = 23 * 1/4 * 502 * 512 = 13005000.

Bài 2: Xét hiệu:

\(\frac{10^{2015}-1}{10^{2014}-1}>\frac{10^{2014}-1}{10^{2014}-1}=1=\frac{10^{2014}+1}{10^{2014}+1}>\frac{10^{2014}+1}{10^{2015}+1}.\)

17 tháng 6 2016

Bài 1: Tính:

A=23+43+63+...+983+1003

=22.(12+22+32+...+492+502)

=22.[1+2(1+1)+3(2+1)+...+99(98+1)+100(99+1)]

A = 22 [1+1.2+2+2.3+3+...+98.99+99+99.100+100]

A =22  [(1.2+2.3+3.4+...+99.100)+(1+2+3+...+99+100)]

..................tự tiếp nha

 

3 tháng 12 2017
koko
ko 
 ko
14 tháng 12 2015

5

tích với nha

 

14 tháng 12 2015

ta có 12015+22015+....+20142014+20152015

=>12015+22015+.....+20142015+20152015-2014

(1+2+3+4+....+2014+2015)2015-2014

=20311202015-2014 mà 20311202015 có tận cùng bằng 0 mà

20311202015-2014=......6

suy ra tổng đó có tận cùng là 6