\(M=2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2020

a) Ta có :

M = 2( a3 + b3 ) - 3( a2 + b2 )

= 2( a + b )( a2 - ab + b2 ) - 3( a2 + b2 )

= 2( a2 - ab + b2 ) - 3( a2 + b2 )

= 2a2 - 2ab + 2b2 - 3a2 - 3b2

= -a2 - 2ab - b2

= -( a2 + 2ab + b2 )

= -( a + b )2 = -(1)2 = -1

a) Gọi hai số tự nhiên liên tiếp đó là a, a+1 ( a ∈ N ) 

Hiệu là một số dương => a + 1 > a ( hiển nhiên rồi =)) )

Theo đề bài ta có : ( a + 1 )2 - a2 = 29

                        <=> a2 + 2a + 1 - a2 = 29

                        <=> 2a + 1 = 29

                        <=> 2a = 28

                        <=> a = 14 ( tm )

=> a = 14 ; a + 1 = 15

Vậy hai số cần tìm là 14, 15

18 tháng 8 2018

a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )

        \(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

         \(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

           \(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

            \(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)

b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x

                                         <=> 1-2x thuộc Ư(2) = {1;2;-1;-2}

Nếu 1-2x = 1 thì 2x = 0 => x= 0

Nếu 1-2x = 2 thì 2x = -1 => x = -1/2

Nếu 1-2x = -1 thì 2x = 2 => x =1

Nếu 1-2x = -2 thì 2x = 3 => x = 3/2

Vậy ....

22 tháng 4 2019

\(\left(n^2-8\right)^2+36\)

\(=n^4-16n^2+64+36\)

\(=\left(n^4+20n^2+100\right)-36n^2\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)

Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)

Mà do \(n\in N\Rightarrow n^2+10-6n=1\)

\(\Leftrightarrow n^2-6n+9=0\)

\(\Leftrightarrow\left(n-3\right)^2=0\)

\(\Leftrightarrow n-3=0\)

\(\Leftrightarrow n=3\)

Vậy n=3.

9 tháng 3 2018

GIÚP MÌNH VỚI Ạ ! MAI MÌNH CẦN GẤP RỒI!

10 tháng 3 2018

Bạn k mik đi xong mình làm

Cho một biểu thức, biết biểu thức là:\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)Các số cần tìm cho, biết:- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).a) Tìm a, b,...
Đọc tiếp

Cho một biểu thức, biết biểu thức là:

\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)

Các số cần tìm cho, biết:

- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).

- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).

a) Tìm a, b, c, d, m và n.

b) Nếu thêm p vào bên phải của biểu thức, biết \(p\ne0\)và ở giữa p có 16 số chẵn, nhưng các số chẵn ≈ 7 ; 8. Các số chẵn chia hết cho 5. Tính giá trị của biểu thức mới.

c) Tính:

 \(am^2\left(5^3+abcd-\left(ab^2-cd^2\right)\right)+\left(\sqrt{\left(m+1\right)^{2c}}-\sqrt{\left(50c\right)^c\times2n}\right)..\)

d) Tính giá trị của X, biết rằng:

\(X=9ab-9cd+9mn+...+\frac{9mn}{8}.\)

Chứng minh rằng: \(X⋮45\)và giá trị của ... là số có tử số của số đó bé hơn tử số của số \(\frac{975}{4}\)là Y. Biết rằng:

\(Y=\frac{15-1}{15+1}\left(d^d-\frac{d}{m}\right)n\sqrt{c}.\)

 

0
26 tháng 11 2019

Ta có: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2ab+2bc+2ac=2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\left(1\right)\)xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

\(\Rightarrow M=ab+bc+ca-\left(a+b+c\right)+1=3a^2-3a+1\)

\(=\left(\sqrt{3}a\right)^2-2.\sqrt{3}a.\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}\)

\(=\left(\sqrt{3}a-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

(Dấu "=" \(\Leftrightarrow\sqrt{3}a-\frac{\sqrt{3}}{2}=0\Leftrightarrow a=\frac{1}{2}\)

hay \(a=b=c=\frac{1}{2}\)

Vậy \(M_{min}=\frac{1}{4}\Leftrightarrow a=b=c=\frac{1}{2}\)

25 tháng 11 2019

giả thiết \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (biến đổi tương đương)

Thay xuống: \(M=3a^2-3a+1=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(a=\frac{1}{2}\)

P/s; hướng làm là đưa về 1 biến như vậy đó, khi tính toán có thể có sai số, bạn tự check lại.

27 tháng 8 2019

1/ Đặt

\(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z,xyz=1\)thì ta có

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow xy+yz+zx=x+y+z\)

\(\Leftrightarrow xyz-xy-yz-zx+x+y+z-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow x=1;y=1;z=1\)

\(\Rightarrow\frac{a}{b^2}=1;\frac{b}{c^2}=1;\frac{c}{a^2}=1\)

\(\Leftrightarrow a=b^2;b=c^2;c=a^2\)

27 tháng 8 2019

2/ Đặt

\(ab=x,bc=y,ca=z\) cần tính

\(P=\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\left(1+\frac{y}{x}\right)\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)

Xét \(x+y+z=0\)

\(\Rightarrow P=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-1\)

Xét \(x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)