K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

*  Do đỉnh C thuộc trục Ox nên C(a;0). 

G thuộc trục Oy nên G(0; b).

* G là trọng tâm tam giác ABC  nên:

x G = x A + ​ x B + ​ x C 3 y G = y A + ​ y B + ​ y C 3 ⇒ 0 = − 2 + ​ 6 + ​ a 3 b = 2 + ​ ( − 4 ) + ​ 0 3 ⇔ a = − 4 b = − 2 3

Tọa độ trọng tâm tam giác ABC là  G ​ 0 ;    − 2 3

Đáp án B

26 tháng 12 2022

Muốn có gợi ý lời giải 2 câu b).., c)... ???? 

NV
9 tháng 3 2021

Gọi \(C\left(x;y\right)\) và G là trọng tâm tam giác

\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+5}{3}\\y_G=\dfrac{y-5}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+5}{3}\right)-\dfrac{y-5}{3}-8=0\)

\(\Leftrightarrow3x-y-4=0\) \(\Rightarrow y=3x-4\Rightarrow C\left(x;3x-4\right)\)

\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)

\(\Leftrightarrow\dfrac{3}{2}=\dfrac{1}{2}\left|5\left(3x-1\right)-\left(x-2\right)\right|\)

\(\Leftrightarrow x=...\)

NV
9 tháng 3 2021

Gọi C(x;y) \(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+2}{3}\\y_G=\dfrac{y-6}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+2}{3}\right)-\dfrac{y-6}{3}+1=0\)

\(\Leftrightarrow3x-y+15=0\Rightarrow y=3x+15\Rightarrow C\left(x;3x+15\right)\)

\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)

\(\Leftrightarrow3=\dfrac{1}{2}\left|-2\left(3x+19\right)-2\left(x-2\right)\right|\)

\(\Rightarrow x=...\)

18 tháng 12 2021

cứu em với ạ

 

18 tháng 12 2021

\(\overrightarrow{AB}=\left(4;0\right)\)

\(\overrightarrow{AC}=\left(3;3\right)\)

\(\cos\widehat{A}=\dfrac{4\cdot3+3\cdot0}{\sqrt{4^2}+\sqrt{3^2+3^2}}=\dfrac{12}{4+3\sqrt{2}}=-24+18\sqrt{2}\)

=>Đề sai rồi bạn

3 tháng 8 2016

gọi K1 là giao điểm của AK với BC. Đầu tiên e chứng minh I là trực tâm của Tam Giác AK1B.

chứng minh tam giác AK1B cân tại K1, rồi suy ra K1M vuông góc vowis AB, suy ra I là trực tâm. rồi e làm như bình thường

1: \(\overrightarrow{AB}=\left(-10;-5\right)\)

\(\overrightarrow{AC}=\left(-6;3\right)\)

\(\overrightarrow{BC}=\left(4;8\right)\)

Vì \(\overrightarrow{AC}\cdot\overrightarrow{BC}=0\) ΔABC vuông tại C

\(AC=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)

\(BC=\sqrt{4^2+8^2}=4\sqrt{5}\)

Do đó: \(S_{ABC}=\dfrac{AC\cdot BC}{2}=\dfrac{3\sqrt{5}\cdot4\sqrt{5}}{2}=3\sqrt{5}\cdot2\sqrt{5}=30\)

 

DD
1 tháng 1 2023

b) Điểm \(M\) thuộc trục tung nên tọa độ điểm \(M\) có dạng \(M\left(0;m\right)\)

\(N\) là trung điểm của \(AB\) suy ra \(N\left(1;4\right)\).

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{MN}\right|=2\sqrt{1^2+\left(m-4\right)^2}\ge2\sqrt{1}=2\)

Dấu \(=\) xảy ra khi \(m-4=0\Leftrightarrow m=4\).

Vậy \(M\left(0;4\right)\)

a) Trọng tâm \(G\) của tam giác \(ABC\)

\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{4+2-2}{3}=\dfrac{4}{3},y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{3-1+5}{3}=\dfrac{7}{3}\).

Vậy \(G\left(\dfrac{4}{3};\dfrac{7}{3}\right)\) là trọng tâm tam giác \(ABC\).