Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
a) 5x(x-2)=0 =>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b)(x+5)(2x-7)=0 =>\(\left[{}\begin{matrix}x+5=0\\2x-7=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-5\\x=\dfrac{7}{2}\end{matrix}\right.\)
c) \(\dfrac{5x}{x+2}\)=4 Đk x\(\ne\)-2
=> 5x=4(x+2)
=>5x-4x=8
=>x=8(tmđk)
Bài 1: Giaỉ các pt:
a) \(3x-15=0\\ < =>3x=15\\ =>x=\dfrac{15}{3}=5\)
Vậy: tập nghiệm của phương trình là S= {5}
b) \(\left(x-3\right)\left(2x+4\right)=0\\ < =>\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: tập nghiệm của phương trình là S= {-2;3}
Bài 2:
Vì \(3a-5< 3b-5\\ =>3a-5+5< 3b-5+5\) (cộng 5 vào 2 vế)
\(< =>3a< 3b\\ =>3a.\dfrac{1}{3}< 3b.\dfrac{1}{3}\) (nhân 1/3 vào 2 vế)
\(< =>a< b\)
Bài 3: Giaỉ pt:
\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\\ \left(ĐKXĐ:\left[{}\begin{matrix}x+1\ne0< =>x\ne-1\\x-2\ne0< =>x\ne2\end{matrix}\right.\right)\)
\(< =>\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}-\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\\ < =>x-2-5x-5=15\\ < =>-5x+x=15+5+2\\ < =>-4x=22\\ =>x=\dfrac{22}{-4}=-\dfrac{11}{2}\left(TMĐK\right)\)
Vậy: tập nghiệm của phương trình là S= \(\left\{-\dfrac{11}{2}\right\}\)
Bài 4: Giaỉ bpt - biểu diễn trục số
\(4x+3\ge7\\ < =>4x\ge4\\ < =>x\ge\dfrac{4}{4}\\ < =>x\ge1\)
Vậy: tập nghiệm của bất phương trình là S= \(\left\{x|x\ge1\right\}\)
Biểu diễn trục số:
0 1
Bài 1 :
a ) 3x - 15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Leftrightarrow\) x = 5
Vậy phương trình có nghiệm x = 5 .
b ) \(\left(x-3\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy phương trình có nghiệm x = 3 hoặc x = -2
\(1-2\left(x+1\right)\ge5\left(x-2\right)+2\)
\(\Leftrightarrow1-2x-2\ge5x-10+2\)
\(\Leftrightarrow-2x-5x\ge-10+2-1+2\)
\(\Leftrightarrow-7x\ge-7\)
\(\Leftrightarrow x\le1\)
\(\frac{3x+3}{3x-2}< 1\)
\(\Leftrightarrow\frac{3x-2+5}{3x-2}< 1\)
\(\Leftrightarrow1+\frac{5}{3x-2}< 1\)
\(\Leftrightarrow\frac{5}{3x-2}< 0\)
\(\Leftrightarrow3x-2< 0\)
\(\Leftrightarrow3x< 2\)
\(\Leftrightarrow x< \frac{2}{3}\)
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Leftrightarrow6x+24+9x+6< 10x-10\)
\(\Leftrightarrow5x+40< 0\)
\(\Leftrightarrow x< -8\)
Tự biểu diễn nha bạn
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Rightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Rightarrow6x+24+9x+6< 10x-10\)
\(5x< -40\)
\(\Rightarrow x< -8\)
Ta có:
\(-2018m>-2018n\)
\(\Rightarrow-2018m.\left(-\dfrac{1}{2018}\right)< -2018n.\left(-\dfrac{1}{2018}\right)\)
\(\Rightarrow m>n\)
b) \(x^2-x\left(x+2\right)>3x-1\)
\(\Leftrightarrow x^2-x^2-2x>3x-1\)
\(\Leftrightarrow-2x-3x>-1\)
\(\Leftrightarrow-5x>-1\)
\(\Leftrightarrow x< \dfrac{1}{5}\)
Vậy S = {\(x\) | \(x< \dfrac{1}{5}\)}
a) Ta có: -2018m > -2018n
\(\Leftrightarrow-2018m\times\left(\dfrac{-1}{2018}\right)< -2018n\times\left(\dfrac{-1}{2018}\right)\)
\(\Leftrightarrow\) m < n
a, x ⩾ -1
--/--/-----//--/-[-----------|--------->
1 0
x < 3
-----------|----------------)---/-/->
0 3
b, Ta có : a < b
\(\Leftrightarrow-3a< -3b\)
\(-3a+1< -3b+1\)
a) -/-/-/-/-/-/-/-[-----------|---------)-/-/-/-/-/-/-/-/>
-1 0 3
b) a < b <=> -3a > -3b <=> -3a + 1 > -3b + 1