\(\dfrac{12}{25}\). Tính tỉ số lượng giác của góc α

b) Biết Sin...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow\cos^2\alpha=\dfrac{16}{25}\)

hay \(\cos\alpha=\dfrac{4}{5}\)

Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)

\(=5\cdot\left(\dfrac{3}{5}\right)^2+6\cdot\left(\dfrac{4}{5}\right)^2\)

\(=5\cdot\dfrac{9}{25}+6\cdot\dfrac{16}{25}\)

\(=\dfrac{141}{25}\)

c) Ta có: \(\tan\alpha=\dfrac{1}{\cot\alpha}=\dfrac{1}{\dfrac{4}{3}}=\dfrac{3}{4}\)

\(D=\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)

\(=\dfrac{\dfrac{9}{16}+\dfrac{16}{9}}{\dfrac{9}{16}-\dfrac{16}{9}}=-\dfrac{337}{175}\)

AH
Akai Haruma
Giáo viên
4 tháng 10 2018

Lời giải:

a) \(A=5\sin ^2a+6\cos ^2a=6(\sin ^2a+\cos ^2a)-\sin ^2a\)

\(=6.1-(\frac{3}{5})^2=\frac{141}{25}\)

b)

\(\tan a=\frac{5}{12}\Leftrightarrow \frac{\sin a}{\cos a}=\frac{5}{12}\)

\(\Rightarrow \frac{\sin a}{5}=\frac{\cos a}{12}\Rightarrow \frac{\sin ^2a}{5^2}=\frac{\cos ^2a}{12^2}=\frac{\sin ^2a+\cos ^2a}{5^2+12^2}=\frac{1}{169}\)

(theo tính chất dãy tỉ số bằng nhau)

\(\Rightarrow \sin ^2a=\frac{5^2}{169}; \cos ^2a=\frac{12^2}{169}\)

Kết hợp với việc \(\sin a, \cos a\) cùng dấu (do thương của chúng dương)

\(\Rightarrow (\sin a, \cos a)=\left(\frac{5}{13}; \frac{12}{13}\right)\) hoặc \(\left(\frac{-5}{13}; \frac{-12}{13}\right)\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a) \(\cot ^2a+1=\left(\frac{\cos a}{\sin a}\right)^2+1=\frac{\cos ^2a+\sin ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)

b)

\(\tan ^2a+1=\left(\frac{\sin a}{\cos a}\right)^2+1=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)

c) Đề bài sai.

\(\sin ^4a+\cos ^2a=\sin ^2a.\sin ^2a+\cos ^2a\)

\(=\sin ^2a(1-\cos ^2a)+\cos ^2a\)

\(\sin ^2a+\cos ^2a-\sin ^2a\cos ^2a=1-\sin ^2a\cos ^2a\)

d)

\(\frac{1-4\sin ^2a\cos ^2a}{(\sin a+\cos a)^2}=\frac{1-(2\sin a\cos a)^2}{\sin ^2a+2\sin a\cos a+\cos ^2a}=\frac{(1-2\sin a\cos a)(1+2\sin a\cos a)}{1+2\sin a\cos a}\)

\(=1-2\sin a\cos a\)

e) ĐK tồn tại tan là $\cos x\neq 0$

\(\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\tan a\cos a\)

Ta có:

\(\frac{2\sin a\cos a-1}{\cos ^2a-\sin ^2a}=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\cos ^2a+\sin ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}\)

\(=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{\sin a-\cos a}{\sin a+\cos a}\)

\(=\frac{\tan a\cos a-\cos a}{\tan a\cos a+\cos a}=\frac{\cos a(\tan a-1)}{\cos a(\tan a+1)}\)\(=\frac{\tan a-1}{\tan a+1}\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

10 tháng 8 2017

a) Ta có : sin\(^2\)12o=cos278o=> sin212o+sin278o=1.

tương tự => A=3

10 tháng 8 2017

b) tương tự câu (a) ta có: cos215o=sin275o ( do 15+75=90 nha bạn ) => cos215o+cos275o=1. Tương tự => B=0

a: Sửa đề: \(A=sin^2a+sin^2a\cdot tan^2a\)

\(=sin^2a\left(1+tan^2a\right)=sin^2a\cdot\dfrac{1}{cos^2a}=tan^2a\)

b: \(=\dfrac{\left(sina+cosa\right)^2}{sina+cosa}-cosa=sina+cosa-cosa=sina\)

c: \(=\dfrac{cosa+cos^2a+sina}{1+cosa}\)

❤ 1/ Cho ΔABC có BC=14cm, đường cao AH=12cm, AC+AB=28cm a) Tính AB,AC b) Tính số đo góc B, góc C ❤ 2/ Cminh các hệ thức: a)tan\(^2\)α+1=\(\frac{1}{cos^2\alpha}\) b)cotg\(^2\alpha\)+1=\(\frac{1}{sin^2\alpha}\) c)\(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\) ❤ 3/ a)Cho sin α=\(\frac{12}{13}\). Tính cos α,tan α,cotg α b)Cho tan α=2/3. Tính sin α,cos α ❤ 4/Cminh các hệ thức sau không phụ thuộc vào...
Đọc tiếp

❤ 1/ Cho ΔABC có BC=14cm, đường cao AH=12cm, AC+AB=28cm

a) Tính AB,AC

b) Tính số đo góc B, góc C

❤ 2/ Cminh các hệ thức:

a)tan\(^2\)α+1=\(\frac{1}{cos^2\alpha}\)

b)cotg\(^2\alpha\)+1=\(\frac{1}{sin^2\alpha}\)

c)\(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)

❤ 3/ a)Cho sin α=\(\frac{12}{13}\). Tính cos α,tan α,cotg α

b)Cho tan α=2/3. Tính sin α,cos α

❤ 4/Cminh các hệ thức sau không phụ thuộc vào α:

A=\(3\left(sin^4\text{a}+cos^4\text{α}\right)-2\left(sin^6\text{α}+cos^6\text{ α}\right)\)

B=\(sin^6\text{ α}+cos^6\text{ α}+3cos^2\text{ α}.sin^2\text{ α}\)

❤ 5/Không dùng máy tính, hãy tính:

A=sin\(^2\)10\(^o\)+\(sin^220^o\)+sin\(^2\)30\(^o\)+...+sin\(^2\)70\(^o\)+sin\(^2\)80\(^o\)

B=cos\(^212^o+cos^278^0+cos^21^o+cos^289^o\)

❤ 6/Cho ΔABC nhọn, CMinh: S\(_{ABC}\)=\(\frac{1}{2}\)AB.AC.sinA

❤ 7/Cho ΔABC có góc A=60,AB=3cm,AC=4cm, đường cao BH và CK.

a) Tính S\(_{\Delta ABC}\) , b) Tính \(_{\Delta AHK}\)

❤ 8/ Cho ΔABC có AB=AC=6cm,BC=4cm, đường cao BK

a) Tính các góc ΔABC(làm tìm đến phút)

b) Tính BK,AK,CK

1

Đăng câu hỏi thôi, không thêm kí tự đặc biệt vào bạn nhé

❤ 1/ Cho ΔABC có BC=14cm, đường cao AH=12cm, AC+AB=28cm a) Tính AB,AC b) Tính số đo góc B, góc C ❤ 2/ Cminh các hệ thức: a)tan\(^2\)α+1=\(\frac{1}{cos^2\alpha}\) b)cotg\(^2\alpha\)+1=\(\frac{1}{sin^2\alpha}\) c)\(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\) ❤ 3/ a)Cho sin α=\(\frac{12}{13}\). Tính cos α,tan α,cotg α b)Cho tan α=2/3. Tính sin α,cos α ❤ 4/Cminh các hệ thức sau không phụ thuộc vào...
Đọc tiếp

❤ 1/ Cho ΔABC có BC=14cm, đường cao AH=12cm, AC+AB=28cm

a) Tính AB,AC

b) Tính số đo góc B, góc C

❤ 2/ Cminh các hệ thức:

a)tan\(^2\)α+1=\(\frac{1}{cos^2\alpha}\)

b)cotg\(^2\alpha\)+1=\(\frac{1}{sin^2\alpha}\)

c)\(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)

❤ 3/ a)Cho sin α=\(\frac{12}{13}\). Tính cos α,tan α,cotg α

b)Cho tan α=2/3. Tính sin α,cos α

❤ 4/Cminh các hệ thức sau không phụ thuộc vào α:

A=\(3\left(sin^4\text{a}+cos^4\text{α}\right)-2\left(sin^6\text{α}+cos^6\text{ α}\right)\)

B=\(sin^6\text{ α}+cos^6\text{ α}+3cos^2\text{ α}.sin^2\text{ α}\)

❤ 5/Không dùng máy tính, hãy tính:

A=sin\(^2\)10\(^o\)+\(sin^220^o\)+sin\(^2\)30\(^o\)+...+sin\(^2\)70\(^o\)+sin\(^2\)80\(^o\)

B=cos\(^212^o+cos^278^0+cos^21^o+cos^289^o\)

❤ 6/Cho ΔABC nhọn, CMinh: S\(_{ABC}\)=\(\frac{1}{2}\)AB.AC.sinA

❤ 7/Cho ΔABC có góc A=60,AB=3cm,AC=4cm, đường cao BH và CK.

a) Tính S\(_{\Delta ABC}\) , b) Tính \(_{\Delta AHK}\)

❤ 8/ Cho ΔABC có AB=AC=6cm,BC=4cm, đường cao BK

a) Tính các góc ΔABC(làm tìm đến phút)

b) Tính BK,AK,CK

0
AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a) Áp dụng công thức \(\sin ^2a+\cos ^2a=1\) thì:

\(P=3\sin ^2a+4\cos ^2a=3(\sin ^2a+\cos ^2a)+\cos ^2a\)

\(=3.1+(\frac{1}{3})^2=\frac{28}{9}\)

b)

\(\tan a=\frac{3}{4}\Rightarrow \cot a=\frac{1}{\tan a}=\frac{4}{3}\)

\(\frac{3}{4}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{3}{4}\cos a\)

\(\Rightarrow \sin ^2a=\frac{9}{16}\cos ^2a\)

\(\Rightarrow \sin ^2a+\cos ^2a=\frac{25}{16}\cos ^2a\Rightarrow \frac{25}{16}\cos ^2a=1\)

\(\Rightarrow \cos ^2a=\frac{16}{25}\Rightarrow \cos a=\pm \frac{4}{5}\)

Nếu \(\Rightarrow \sin a=\pm \frac{3}{5}\) (theo thứ tự)

c)

\(\frac{1}{2}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{\cos a}{2}\). Vì a góc nhọn nên \(\cos a\neq 0\)

Do đó:

\(\frac{\cos a-\sin a}{\cos a+\sin a}=\frac{\cos a-\frac{\cos a}{2}}{\cos a+\frac{\cos a}{2}}=\frac{\cos a(1-\frac{1}{2})}{\cos a(1+\frac{1}{2})}=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}\)

14 tháng 8 2017

a)ta có cos2a = 1-sin2a => A = 4(1-sin2a) -6sin2a

A= 4 -10sin2a = 4- 10.(4/5)2 = -2,4

A = -2,4

b) B = tt

14 tháng 8 2017

ôi, nhầm sina =1/5 => A = 4-10.(1/5)2 = 4-0,4 = 3,6

A=3,6