\(3x^2-27x+54\) thành tích

b) Tìm m và p sao cho A = 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2020

a) \(M=x^2-8x+2018=x^2-8x+16+2002=\left(x-4\right)^2+2002\)

\(\left(x-4\right)^2\ge0\forall x\Rightarrow\left(x-4\right)^2+2002\ge2002\)

Dấu " = " xảy ra <=> x - 4 = 0 => x = 4

Vậy MMin = 2002 khi x = 4

b) \(N=4x^2-12x+2019=4x^2-12x+9+2010=\left(2x-3\right)^2+2010\)

\(\left(2x-3\right)^2\ge0\forall x\Rightarrow\left(2x-3\right)^2+2010\ge2010\)

Dấu " = " xảy ra <=> 2x - 3 = 0 => x = 3/2

Vậy NMin = 2010 khi x = 3/2

c) \(P=x^2-x+2016=x^2-x+\frac{1}{4}+\frac{8063}{4}=\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\ge\frac{8063}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy PMin = 8063/4 khi x = 1/2

d) \(Q=x^2-2x+y^2+4y+2020\)

\(Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2015\)

\(Q=\left(x-1\right)^2+\left(y+2\right)^2+2015\)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+2015\ge2015\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy QMin = 2015 khi x = 1 ; y = -2 

5 tháng 6 2019

....

a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên

b) Ko hiểu

***

A=n+1n2n+1n−2

a. để B là phân số thì n-2 khác 0 => n khác 2

b.A=n+1n2n+1n−2n2+3n2n−2+3n−2n2n2n−2n−2+3n23n−2=1+3n23n−2

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để A nguyên thì n=(-1;1;3;5)

2 tháng 11 2016

a ) \(M=a^3+b^3+ab\) biết \(a+b=1\)

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(M=a^2-ab+b^2+ab\)

\(M=a^2+b^2\)

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2=\left(a+b\right)^2=1\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Vậy \(Min_M=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\).

b ) \(N=\left(x^2+x\right)\left(x^2+x-4\right)=\left[\left(x^2+x-2\right)+2\right]\left[\left(x^2+x-2\right)-2\right]=\left(x^2+x-2\right)^2-4\ge-4\)

Vậy \(Min_N=-4\)\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\).

10 tháng 7 2016

a,Vì \(x^4\ge0;3x^2\ge0=>x^4+3x^2+2\ge2\) (với mọi x)

Dấu "=" xảy ra \(< =>x^4=3x^2=0< =>x=0\)

Vậy MInA=2 khi x=0

b,Vì \(x^4\ge0=>x^4+5\ge5=>\left(x^4+5\right)^2\ge5^2=25\) (với mọi x)

Dấu "=" xảy ra \(< =>x^4=0< =>x=0\)

Vậy MinB=25 khi x=0

a) \(x^4+3x^2+2\)

\(=\left(x^2\right)^2+2.x^2.\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\)

\(=\left(x^2+\frac{3}{2}\right)^2-\frac{1}{4}\le\frac{-1}{4}\)

MIN A = \(\frac{-1}{4}< =>x^2+\frac{3}{2}=0\)

Do \(x^2\ne\frac{-3}{2}=>MINA\)không  có

b) Cũng ko có Min