Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}2x+3y=4\\4x-2y=5\end{cases}}\)
<=> \(\hept{\begin{cases}4x+6y=8\\4x-2y=5\end{cases}}\)
<=>\(\hept{\begin{cases}8y=3\\2x+3y=4\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{3}{8}\\2x+\frac{9}{8}=4\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{3}{8}\\2x=\frac{23}{8}\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{3}{8}\\x=\frac{23}{16}\end{cases}}\)
Vậy hệ phương trình có nghiệm (x;y) là \(\left(\frac{23}{16};\frac{3}{8}\right)\)
1)
a) \(\left\{{}\begin{matrix}2x-y=5\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x-y+x+y=5+4\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x=9\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy (x;y)=(3;1)
b) \(16x^5-8x^3+x=0\Leftrightarrow x\left(16x^4-8x^2+1\right)=0\Leftrightarrow x\left[\left(4x^2\right)^2-2.4x^2.1+1^2\right]=0\Leftrightarrow x\left(4x^2-1\right)^2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\4x^2-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=\frac{\pm1}{2}\end{matrix}\right.\)
Vậy S={\(-\frac{1}{2};0;\frac{1}{2}\)}
2)
A=\(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{4}+\frac{1}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{5-1}=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{4}=\frac{\sqrt{5}-1+\sqrt{5}+1}{4}=\frac{2\sqrt{5}}{4}=\frac{\sqrt{5}}{2}\)
B=\(\frac{4}{3+\sqrt{5}}-\frac{8}{1+\sqrt{5}}+\frac{15}{\sqrt{5}}=\frac{4\left(3-\sqrt{5}\right)}{9-5}-\frac{8\left(1-\sqrt{5}\right)}{1-5}+3\sqrt{5}=\frac{4\left(3-\sqrt{5}\right)}{4}-\frac{8\left(\sqrt{5}-1\right)}{4}+3\sqrt{5}=3-\sqrt{5}-2\sqrt{5}+2+3\sqrt{5}=5\)
ai bt làm k ạ
\(\frac{a-b+5\sqrt{a}+5\sqrt{b}}{\sqrt{a}-\sqrt{b}+5}=\frac{\left[\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2\right]+\left(5\sqrt{a}+5\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}+5}\)
\(=\frac{\left[\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\right]+5\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}+5}=\frac{\left(\sqrt{a}-\sqrt{b}+5\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}+5\right)}\)
\(=\sqrt{a}+\sqrt{b}\)