Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
b: Ta có: \(\widehat{EMC}=\widehat{B}\)
\(\widehat{C}=\widehat{B}\)
Do đó: \(\widehat{EMC}=\widehat{C}\)
hay ΔMEC cân tại E
a: Xét tứ giác AQDP có
góc AQD=góc APD=góc PAQ=90 độ
nên AQDP là hình chữ nhật
b: Vì AQDP là hình chữ nhật
nên AD cắt PQ tại trung điểm của mỗi đường
=>K là trung điểm của DA
Xét ΔDAB có DK/DA=DH/DB
nên KH//AB và KH=AB/2=AD/2
Sửa đề; HD vuông góc với AB tại D
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>AH=DE
b: Sửa đề: AM vuông góc với DE
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>góc MAC=góc MCA
Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC
=>góc AED+góc MAC=90 độ
=>AM vuông góc với DE
c: góc EDN=góc EDH+góc NDH
=góc HAC+góc NHD
=góc HAC+góc BCA
=90 độ
=>ND vuông góc với ED(1)
góc KED=góc KEH+góc DEH
=góc KHE+góc DAH
=góc CBA+góc BAH=90 độ
=>EK vuông góc với ED(2)
Từ (1) và (2) suy ra EK//DN
câu 4:
a) ĐK: x≠ 0
b) \(A=x^2-x+1\)
sa thì sửa
Cúc bạn học tốt
Bài 5:
a: H đối xứng với D qua AB
nên HD vuông góc với AB tại trung điểm của HD
=>AB là phân giác của góc HAD(1)
H đối xứng với E qua AC
nên HE vuông góc với AC tại trung điểm của HE
=>AC là phân giác của góc HAE(2)
Xét tứ giác AIHK có
góc AIH=góc AKH=góc KAI=90 độ
nên AIHK là hình chữ nhật
b: Từ (1), (2) suy ra góc EAD=2*90=180 độ
=>E,A,D thẳng hàng
Bài 1:
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC đồg dạg với ΔHBA
c: Xét ΔaBC vuông tại A có AHlà đường cao
nên \(AB^2=BH\cdot BC\)
=>BH=36/10=3,6(cm)
=>CH=6,4cm
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ só bằng nhau ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó:BD=30/7cm
Hình bạn tự vẽ nhé tks bạn
a) \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.6.8=24\left(cm^2\right)\)
b)Ta có: HM là đường trung tuyến của \(\Delta AHB\) vuông
\(\Rightarrow HM=\frac{1}{2}AB=AM=MB\)
Vì D là điểm đối xứng với H qua M nên HM=MD
Do đó HM=AM=MB=MD
\(\Rightarrow\)tứ giác ADBH là hình bình hành (Hai đường chéo cắt nhau tại trung điểm mỗi đường)
Vì \(\widehat{AHB}=90^o\)(AH là đường cao của \(\Delta ABC\))
Do đó ADBH là hình chữ nhật (hình bình hành có một góc vuông)
c) Ta có AH là đường cao của \(\Delta\)cân ABC do đó AH cũng là đường trung tuyến ứng với cạnh BC \(\Rightarrow BH=CH\)
Ta có AH=HE(A đối xứng với E qua H)
Do đó tứ giác ABEC là hình bình hành ( Hai đường chéo cắt nhau tại trung điểm mỗi đường)
Vì \(\widehat{AHB}=90^o\)(AH là đường cao của \(\Delta ABC\))
Do đó ABEC là hình thoi (Hình bình hành có 2 đường chéo vuông góc với nhau)
d) Ta có I là trung điểm của HF
K là trung điểm của FC
Do đó IK là đường trung bình của \(\Delta HCF\)
\(\Rightarrow\)IK//HC(tính chất đường trung bình)
mà HC\(\perp\)HE
Nên KI\(\perp\)HE (Từ vuông góc đến song song)
mà I là giao điểm của đường cao HF và đường cao KI
\(\Rightarrow\)I là trực tâm của \(\Delta EHK\)
\(\Rightarrow\)EI là đường cao thứ ba
Do đó EI\(\perp\)HK(1)
Ta có K là trung điểm của FC
H là trung điểm của BC
Do đó KH là đường trung bình của \(\Delta BCF\)
\(\Rightarrow\)KH//BF (2)
Từ (1) và (2) \(\Rightarrow\)EI\(\perp\)BF (đpcm)
*Giải muốn khóc luôn đó bạn