Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho 5 số không âm a,b,c,d,e có a+b+c+d+e=1.tìm GTLN cua tổng S=ab+bc+cd+de
sao khong ai giup toi vay?
Do a,b,c,d,e>0 mà a+b+c+d+e=1 => a,b,c,d,e<1
Ta có:tổng không đổi,tích lớn nhất khi 2 số bằng nhau
=> ab lớn nhất <=> a=b
bc lớn nhất <=> b=c
cd lớn nhất <=> c=d
de lớn nhất <=> d=e
=> ab+bc+cd+de đạt GTLN <=> a=b=c=d=e
=> a=b=c=d=e=1/5=0,2
=> ab+bc+cd+de=0,16
Xin lỗi nha, mình ko biết vẽ hình trên máy nên bạn tự vẽ hình giùm mình nha
b)Ta có:\(\widehat{MNB}=\dfrac{1}{2}\stackrel\frown{BM}\left(1\right)\)( góc nội tiếp chắn cung BM)
\(\widehat{AEB}=\dfrac{1}{2}\left(\stackrel\frown{AB-\stackrel\frown{AM}}\right)\)= \(\dfrac{1}{2}\stackrel\frown{BM}\)(2) (Góc có đỉnh ngoài đường tròn)
Từ (1) và (2) ⇒ \(\widehat{MNB}=\widehat{AEB}\)
Xét Δ BMN và Δ BFE có:
\(\widehat{B}\): góc chung
\(\widehat{MNB}=\widehat{AEB}\) ( cùng chắn \(\stackrel\frown{BM}\) )
Do đó: Δ BMN \(\sim\) Δ BFE(g-g)
⇔ BM . BE =BN . BF (đpcm)
vẽ giùm cái hình đi, lười vẽ hình trên này quá
Bài này không thể giải được vì không có dữ kiện gì về A, B, C cả, bên trên X, Y, Z còn bên dưới A, B, C thì sao mà giải
Cách 1. Áp dụng BĐT AM-GM :
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}\)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)
Cách 2. Áp dụng BĐT Cauchy : \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)
Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) , \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\), \(\frac{d^2}{d+a}+\frac{d+a}{4}\ge d\)
Cộng theo vế : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}+\frac{1}{4}.2.\left(a+b+c+d\right)\ge a+b+c+d\)
\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)
Ta có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\frac{\sqrt{2}}{2}\left(a+b\right)\)
\(\sqrt{b^2+c^2}\ge\frac{\sqrt{2}}{2}\left(b+c\right)\)
\(\sqrt{c^2+a^2}\ge\frac{\sqrt{2}}{2}\left(c+a\right)\)
\(\Rightarrow\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\frac{\sqrt{2}}{2}.2.\left(a+b+c\right)=\sqrt{2}\)
@@ minh cung moi tim ra huong giai nhung chua hieu cach giai cua ban