Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi tương đương :
\(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge\sqrt{a^2+b^2+c^2-ab-bc-ac}\)
\(\Leftrightarrow4\left|a-b\right|+4\left|b-c\right|+4\left|c-a\right|\ge\sqrt{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)
\(\Leftrightarrow4\left|a-b\right|+4\left|b-c\right|+4\left|c-a\right|\ge\sqrt{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Đặt \(\left|a-b\right|=x;\left|b-c\right|=y;\left|c-a\right|=z\)
\(BĐT\Leftrightarrow4x+4y+4z\ge\sqrt{x^2+y^2+z^2}\)
\(\Leftrightarrow16\left(x^2+y^2+z^2+2xy+2yz+2xy\right)\ge x^2+y^2+z^2\)
\(\Leftrightarrow15x^2+15y^2+15z^2+32xy+32yz+32xz\ge0\) (luôn đúng vì \(x;y;z\ge0\))
Vậy \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge\sqrt{a^2+b^2+c^2-ab-bc-ac}\)
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:
\(\left\{{}\begin{matrix}\dfrac{a+b}{2}\ge\sqrt{ab}\\\dfrac{b+c}{2}\ge\sqrt{bc}\\\dfrac{a+c}{2}\ge\sqrt{ac}\end{matrix}\right.\)
Cộng theo 3 vế ta có:
\(\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{a+c}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}b+\dfrac{1}{2}c+\dfrac{1}{2}a+\dfrac{1}{2}c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\left(đpcm\right)\)
\(a=b=c\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=2ab\\b^2+c^2=2bc\\a^2+c^2=2ac\end{matrix}\right.\)
Cộng theo 3 vế ta có:
\(a^2+b^2+b^2+c^2+a^2+c^2=2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)
Ngược lại,khi \(a\ne b\ne c\) thì \(\left\{{}\begin{matrix}a^2+b^2>2ab\\b^2+c^2>2bc\\a^2+c^2>2ac\end{matrix}\right.\) ta có thể dễ dàng cm được \(a^2+b^2+c^2>ab+bc+ac\)
Ta có
\(a^4+b^4+c^4-abc\left(a+b+c\right)=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)-abc\left(a+b+c\right)\)
\(=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab+bc+ac\right)^2-2a^2bc-2ab^2c-2abc^2\right]-a^2bc-ab^2c-abc^2\)
\(=\left(a^2+b^2+c^2\right)^2-2\left(ab+bc+ac\right)^2+4a^2bc+4ab^2c+4abc^2-a^2bc-ab^2c-abc^2\)
\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\right]^2-2\left(ab+bc+ac\right)^2+abc\left(4a+4b+4c-a-b-c\right)\)
\(=\left(a+b+c\right)^4-2\left(a+b+c\right)^2.2\left(ab+bc+ac\right)+4\left(ab+bc+ca\right)^2-2\left(ab+bc+ac\right)^2+abc\left(3a+3b+3c\right)\)
\(=\left(a+b+c\right)^4-4\left(a+b+c\right)^2\left(ab+bc+ca\right)+2\left(ab+bc+ac\right)^2+3abc\ge0\)
Ap dung BDt co si ta co
\(a^4+b^4\ge2a^2b^2\)
\(b^4+c^4\ge2b^2c^2\)
\(c^4+a^4\ge2a^2c^2\)
=> \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(1)
Lai co \(a^2b^2+b^2c^2\ge2ab^2c\)
\(b^2c^2+c^2a^2\ge2abc^2\)
\(c^2a^2+a^2b^2\ge2a^2bc\)
=> \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)(2)
Từ (1) va (2) => \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)