Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét tam giác BAC ta có
B=65 độ
C=65 độ
=> tam giác ABC cân tại A
xét tam giác ABC ta có
B+C+A=180độ
=>65+65+A=180 độ
=>A=50 độ
b) vì Ay//Bc
mà góc C và góc CAy là 2 góc so le trong
=>C=CAy
mà góc C= 65 độ
=>CAy=65 độ
mà AC nằm giữa AB và Ay
=>BAC+CAy=BAy
=>BAy=65+50=115 dộ
c) vì góc BAy và góc xAy là 2 góc kề bù nên
=>BAy+xAy=180 độ
=>yAx=180-115=65 độ
mà Ay nằm giữa AC và Ax
mà CAy=xAy=65 độ
=>Ay là tia p/g của góc CAx
![](https://rs.olm.vn/images/avt/0.png?1311)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath
bạn kham khảo tại link dưới đây nhé.
câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C O K
a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK
=> \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\) (1)
+ \(\widehat{OKB}\)là góc ngoài của tam giác AKC
=>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)
Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)
hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)
=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)
Xét tam giác ABC có:
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)
=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)
Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)
Ta có: BO là tia phân giác của góc ACB
=>\(2\widehat{ABO}=\widehat{ABC}\)(**)
Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)
=>\(2\widehat{ACO}=\widehat{ACB}\)
=> CO là tia phân giác của góc ACB
a) Ta có: ΔABC cân tại A(gt)
nên ˆB=1800−ˆA2B^=1800−A^2(Số đo của một góc ở đáy trong ΔABC cân tại A)
⇔ˆB=1800−5002=13002⇔B^=1800−5002=13002
hay ˆB=650B^=650
Ta có: ΔABC cân tại A(gt)
nên ˆABC=ˆACBABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)
mà ˆABC=650ABC^=650(cmt)
nên ˆACB=650ACB^=650
Vậy: ˆABC=650ABC^=650; ˆACB=650ACB^=650
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
c) Ta có: ΔABH=ΔACH(cmt)
nên BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên BH=BC2=162=8(cm)BH=BC2=162=8(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
AB2=AH2+BH2AB2=AH2+BH2
⇔AH2=AB2−BH2=172−82=225⇔AH2=AB2−BH2=172−82=225
hay AH=15(cm)
Vậy: AH=15cm
d) Xét ΔANC vuông tại N và ΔAMB vuông tại M có
AC=AB(ΔABC cân tại A)
ˆBAMBAM^ chung
Do đó: ΔANC=ΔAMB(cạnh huyền-góc nhọn)
Suy ra: NC=MB(hai cạnh tương ứng)