A B C M H E F

TAM GIÁC ABC CÂN TẠI...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Mình không biết! Khó thật! Mà mình cũng chưa tới lớp 7 nên cũng không thể giải cho bạn được! thông cảm nha!

Nhớ tk mình

21 tháng 4 2018

Khó quá mình không biết giải

3 tháng 8 2021

bạn tự vẽ hình nhé

Nối AM. Ta có ˆHEF=180o−ˆAEF=180o−2ˆEMH=2(90o−ˆEMH)=2ˆHEMHEF^=180o−AEF^=180o−2EMH^=2(90o−EMH^)=2HEM^(Tam giác EMH vuông tại H)

Suy ra:ˆHEF=2ˆHEMHEF^=2HEM^=> EM là tia phân giác của góc ˆHEFHEF^ hay là tia phân giác góc ngoài của tam giác ΔAEFΔAEF tại E

Ta có: ΔABCΔABC cân tại A có M là trung điểm của BC(gt) => AM đồng thời là đường phân giác góc ˆBACBAC^

Xét ΔAEFΔAEFcó AM là đường phân giác của góc ˆBACBAC^và EM là đường phân giác góc ngoài của ΔAEFΔAEFtại E, 2 tia phân giác này cắt nhau tại M => M là giao điểm của 3 đường phân giác trong ΔAEFΔAEF(1 tia phân giác trong và 2 tia phân giác ngoài)

=> FM cũng là tia phân giác góc ngoài của ΔAEFΔAEFtại  hay là tia phân giác của góc EFC

Vậy: FM là tia phân giác của góc EFC (đpcm)

19 tháng 4 2022

Nối AM. Ta có (Tam giác EMH vuông tại H)

Suy ra:ˆHEF=2ˆHEMHEF^=2HEM^=> EM là tia phân giác của góc ˆHEFHEF^ hay là tia phân giác góc ngoài của tam giác ΔAEFΔAEF tại E

Ta có: ΔABCΔABC cân tại A có M là trung điểm của BC(gt) => AM đồng thời là đường phân giác góc ˆBACBAC^

Xét ΔAEFΔAEFcó AM là đường phân giác của góc ˆBACBAC^và EM là đường phân giác góc ngoài của ΔAEFΔAEFtại E, 2 tia phân giác này cắt nhau tại M => M là giao điểm của 3 đường phân giác trong ΔAEFΔAEF(1 tia phân giác trong và 2 tia phân giác ngoài)

=> FM cũng là tia phân giác góc ngoài của ΔAEFΔAEFtại  hay là tia phân giác của góc EFC

Vậy: FM là tia phân giác của góc EFC (đpcm)

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

18 tháng 3 2020

a) xét tam giác AEF có

AH là đường cao của EF

AH là đường phân giác của góc A

\(H\in EF\)

=>tam giác AEF cân ở A

=>AH là đường cao đồng thời là đường trung tuyế của EF

=> H là trung điểm của EF

=>HE=HF=\(\frac{1}{2}EF\)(dpcm)

b)ta có \(\widehat{BME}=\widehat{CMF}\)(đối đỉnh )

mà \(\widehat{ACB}=\widehat{F}+\widehat{CMF}\)( t/c góc ngoài của tam giác )

ta có \(\widehat{F}=\widehat{AEF}\)(tam giác AEF cân ) mà\(\widehat{AEF}=\widehat{B}+\widehat{BME}\)

\(\Leftrightarrow\widehat{ACB}=\widehat{B}+\widehat{BME}+\widehat{CMF}\)

\(\Leftrightarrow\widehat{ACB}=\widehat{B}+2\widehat{BME}\)

=>\(\widehat{2BME}=\widehat{ACB}-\widehat{B}\)

c) tam giác AHE có 

góc AHE =90 độ => \(HE^2+AH^2+AE^2\left(pi-ta-go\right)\)

thay \(HE=\frac{1}{2}EF\)ta được

\(\left(\frac{1}{2}EF\right)^2+AH^2=AE^2\)

=>\(\frac{EF^2}{4}+AH^2=AE^2\left(dpcm\right)\)

d) kẻ BI//AC =>\(\widehat{BIE}=\widehat{AFH},\widehat{AFH}=90^0-\frac{1}{2}\widehat{A}\)\(\Leftrightarrow\widehat{BIE}=90^0-\frac{1}{2}\widehat{A}\)(1)

mà tam giác AHE zuông tại H

=>\(\widehat{AHE}=90^0-\frac{1}{2}\widehat{A}\left(2\right)\)

từ 1 zà 2 =>\(\widehat{BIE}=\widehat{AHE}=>\Delta BEI\)cân tại B

=> BE=BI(3)

xét tam giác MFC có \(BI//FC;B\in MC;I\in MF\)

=>\(\frac{BI}{FC}=\frac{MB}{MC}=1\)

=>\(BI=FC\left(4\right)\)

từ 3 zfa 4

=> BE=CF (dpcm

19 tháng 2 2020

BIET DAP AN BAI NAY O AU KHONG