![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{ABD}\)\(=\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\))
BD chung ( gt )
\(\widehat{BAD}\)\(=\widehat{BED}\)( = 90o )
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\)( 2 cạnh t.ư )
b, Xét \(\Delta ABE\)có :
AB = BE ( câu a )
\(\Rightarrow\)\(\Delta ABE\)cân tại B
Mà BF là đường p/g của \(\Delta ABE\)
\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE
c, Ta có :
\(\hept{\begin{cases}AB\perp AC\left(gt\right)\\DK\perp Ac\left(gt\right)\end{cases}}\Rightarrow\hept{ }AB//DK\)
\(\Rightarrow\widehat{ABD=}\)\(\widehat{BDK}\)(SLT)
Mà\(\widehat{ABD}\)\(=\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))
\(\Rightarrow\widehat{BDK}\)\(=\widehat{DBK}\)
Xét \(\Delta BDK\)có :
\(\widehat{BDK}\)\(=\widehat{DBK\left(cmt\right)}\)
\(\Rightarrow\Delta BDK\)cân tại K
\(\Rightarrow BK=DK\left(dpcm\right)\)
d, Xét \(\Delta ABH\)có : \(AB< BH+AH\)(1)
Xét \(\Delta AHC\)có : \(AC< AH+CH\)(2)
Từ (1) và (2) \(\Rightarrow AB+AC< AH+BH+AH+CH\)
Hay \(AB+AC< BC+2AH\left(dpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{ABD}\)=\(\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\) )
BD chung ( gt )
\(\widehat{BAD}\)= \(\widehat{BED}\)( = 90o )
\(\Rightarrow\Delta ABD=\Delta BED\)( ch - gn )
\(\Rightarrow AB=BE\)( 2 cạng t.ư )
b, Xét \(\Delta ABE\)có :
AB = AE ( câu a ) \(\Rightarrow\Delta ABE\)cân tại B
BF là đường p/g của \(\Delta ABE\)
\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE
c, Ta có : \(AB\perp AC\left(gt\right)\)
\(DK\perp AC\left(gt\right)\)
\(\Rightarrow AB//DK\)
\(\Rightarrow\widehat{ABD}\)= \(\widehat{BDK}\)(SLT)
Mà \(\widehat{ABD}\)= \(\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))
\(\Rightarrow\widehat{BDK}\)= \(\widehat{DBK}\)
Xét \(\Delta DBK\)có :
\(\widehat{BDK}\)= \(\widehat{DBK}\)(cmt)
\(\Rightarrow\Delta BDK\)cân tại K
\(\Rightarrow BK=KD\left(đpcm\right)\)
d, Xét \(\Delta ABH\)có : AB < BH + AH
Xét \(\Delta AHC\)có : AC < AH + CH
\(\Rightarrow AB+AC< AH+BH+AH+CH\)
Hay \(AB+AC< BC+2AH\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của BA trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
Xét ΔMBC có HB<HC
mà HB là hình chiếu của MB trên BC
và HC là hình chiếu của MC trên BC
nên MB<MC
b: Ta có: ΔMBH vuông tại H
nên góc HMB<90 độ
=>góc HMN>90 độ
=>NH>NM
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét ∆ABM và ∆ECM, ta có:
- AM = ME (gt)
- \(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
- MB = MC (M là trung điểm BC)
=> ∆ABM = ∆ECM (c-g-c)
b, Xét ∆AMC và ∆BME, ta có:
- AM = ME (gt)
- \(\widehat{AMC}=\widehat{BME}\) (đối đỉnh)
- MB = MC (M là trung điểm BC)
=> ∆AMC = ∆BME (c-g-c)
=> AC = BE
c, Xét ∆AHB và ∆DHB, ta có:
- AH = HD (gt)
- \(\widehat{AHB}=\widehat{DHB}=90^o\)
- BH là cạnh chung (gt)
=> ∆AHB = ∆DHB (c-g-c)
=> \(\widehat{ABH}=\widehat{DBH}\)
=> BM là phân giác góc ABM
d,
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
Do đo: ΔABE=ΔHBE
b: Ta có:BA=BH
EA=EH
Do đó:BE là đường trung trực của AH
c: Ta có: EA=EH
mà EH<EC
nên EA<EC
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
=>BM<CM
b: Ta có: ΔHBM vuông tại H
nên \(\widehat{HMB}< 90^0\)
=>\(\widehat{DMH}>90^0\)
=>DH>DM