Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi AH là đường cao hạ từ đỉnh A của tam giác ABC.
Ta có: \(S_{\Delta ABC}=\dfrac{1}{2}.AH.BC.\)
\(S_{\Delta ACD}=\dfrac{1}{2}.AH.CD=\dfrac{1}{2}.AH.\dfrac{1}{3}BC.\)
\(\Rightarrow\dfrac{1}{3}S_{\Delta ABC}=S_{\Delta ACD}.\Rightarrow S_{\Delta ACD}=\dfrac{1}{3}.150=50cm^2.\)
b. Gọi BK là đường cao hạ từ đỉnh B của tam giác ABC.
Ta có: \(S_{\Delta ABE}=\dfrac{1}{2}.BK.BE;S_{\Delta EBF}=\dfrac{1}{2}.BK.EF;S_{\Delta FBC}=\dfrac{1}{2}.BK.FC.\)
Mà AE = EF = FC (đề bài).
\(\Rightarrow\) Diện tích các tam giác ABE, BEF, BCF bằng nhau.
A.S cef = 1/3 S ace (vì có cf =1/3ac và chu
ng chiều cao hạ từ e) =2: 1/3= 6 (cm2)
S ace = 1/4 S ABC (vì có ce =1/4 BC và chung chiều cao hạ từ a ) =6: 1/4=24(cm2)
Tới đây thui khi nào rảnh tui giải tiếp giờ tui bận đi học!
Tui xong rồi vào chép nè:
a, Chỉ ra: SBCF = 4 S CEF ( 1 ) SABF = 2 SBCF ( 2 ) Từ ( 1 ) và ( 2 ) suy ra SABC = 12S CEF Vậy SABC = 24 cm2 b, Chỉ ra: SBEF = 3 S CEF ( 3 ) SBDE = 3 SCDE ( 4 ) Từ (3) và (4) Suy ra: S BDE - S BEF = 3 (S CDE - S CEF ) Do đó: S BDF = 3 S CDF ( 5 ) c, Chỉ ra: S ADF = 2 S CDF ( 6 ) Từ (5) và (6) suy ra: S CDF = S ABF = 16 cm2 Tính được S BDF = 48 cm2 ( 7 ) S BEF = 6 cm2 ( 8 ) Từ (7) và (8) suy ra: SBDF = 8 SBEF suy ra: DF = 8EF
S BFC gấp 3 lần S EFC vì : EC = 1/4 BC
Chung chiều cao hạ từ đỉnh F xuống đáy BC
=> Diện tích tam giác BFC là : 2 x 4 = 8 cm2
S BFC = 1/3 S ABC vì : FC = 1/3 AC
Chung chiều cao hạ từ đỉnh B xuống AC
=> S ABC là : 3 x 8 = 24 cm2
Phần này ok rồi , còn lại chiều k là tiếp cho
Nối B với D,C với K
Xét \(\Delta KAD\) và \(\Delta KAC\) có chung chiều cao xuất phát từ K , đáy AD = \(\frac{1}{3}\) Đáy AC
Nên \(S_{KAD}\) = \(\frac{1}{3}.S_{KAC}\)
Xét \(\Delta BAD\) và \(\Delta BAC\) có chung chiều cao xuất phát từ B , đáy AD = \(\frac{1}{3}\)
Nên \(S_{BAD}=\frac{1}{3}.S_{BAC}\)
Do đó : \(S_{KAD}+S_{BAD}=\frac{1}{3}.S_{KAC}+\frac{1}{3}.S_{BAC}\)
Mà : \(S_{KBC}=S_{KAC}+S_{BAC}\) nên \(\frac{1}{3}.S_{KBC}=\frac{1}{3}.S_{KBC}=\frac{1}{3}.S_{KAC}+\frac{1}{3}.S_{BAC}\)
Nên : \(S_{KBD}=\frac{1}{3}.S_{KBC}\)
Ta có : \(S_{KBC}=2.S_{KBE}\)
Nên : \(S_{KBD}=\frac{2}{3}.S_{KBE}\)
Nên : \(S_{EBD}=\frac{1}{3}.S_{KBE}\)
Mà : \(S_{EBD}=\frac{1}{2}.S_{BDC}=\frac{1}{2}.\left(\frac{2}{3}.S_{ABC}\right)=\frac{1}{3}.180=60\)
Vậy : \(S_{KBE}=3.S_{EBD}=180\)
\(S_{ABED}=S_{ABC}-S_{DEC}=180-60=120\)
Vậy : \(S_{AKD}=S_{KBE}-S_{ABED}=180-120=60cm^2\)
tick cho mình đi
Lời giải
a) Tính diện tích tam giác ABC
Vì MA = 3/2 MC, nên MC = 2MA/3.
Vì CE = 1/2 BC, nên BC = 2CE.
Vì D là giao của BM và AE, nên MD = MC - ME = 2MA/3 - MC/2 = MA/6.
Vì AM = 45cm, nên MC = 2AM/3 = 30cm, BC = 60cm và MD = AM/6 = 7.5cm.
Diện tích tam giác ABC là:
b) So sánh diện tích tam giác ABM và diện tích tam giác CME
Vì AM = 3/2 MC, nên BM = 2MC/3.
Vì ME = MC/2, nên BM = 4ME/3.
Vì BM/ME = 4/3, nên diện tích tam giác ABM/diện tích tam giác CME = 4/3.
Vậy, diện tích tam giác ABM lớn hơn diện tích tam giác CME.
c) So sánh diện tích tam giác MED và diện tích tam giác MAD
Vì MD = AM/6, nên diện tích tam giác MED/diện tích tam giác MAD = AM/6 * 1/AM = 1/6.
Vậy, diện tích tam giác MED nhỏ hơn diện tích tam giác MAD.
Vẽ hình
[Hình tam giác ABC]
Trong hình trên, ta có:
- AB = 45cm
- AM = 30cm
- MC = 20cm
- BC = 60cm
- CE = 30cm
- MD = 7.5cm
Kết luận
- Diện tích tam giác ABC là 1350 cm2
- Diện tích tam giác ABM lớn hơn diện tích tam giác CME
- Diện tích tam giác MED nhỏ hơn diện tích tam giác MAD