
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)

A B C D E I H K M
a)
Xét tam giác ABD và tam giác ACE có:
AB = AC (tam giác ABC cân tại A)
ABD = ACE (tam giác ABC cân tại A)
BD = CE (gt)
=> Tam giác ABD = Tam giác ACE (c.g.c)
b)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
c)
Xét tam giác HBD vuông tại H và tam giác KCE vuông tại K có:
HBD = KCE (tam giác ABC cân tại A)
BD = CE (gt)
=> Tam giác HBD = Tam giác KCE (cạnh huyền - góc nhọn)
d)
HDB = IDE (2 góc đối đỉnh)
KEC = IED (2 góc đối đỉnh)
mà HDB = KEC (Tam giác HBD = Tam giác KCE)
=> IDE = IED
=> Tam giác IDE cân tại I
MB = MC (M là trung điểm của BC)
BD = CE (gt)
=> MB - BD = MC - CE
=> MD = ME
=> M là trung điểm của DE
=> AM là đường trung tuyến của tam giác ADE cân tại A
=> AM là đường trung trực của DE
ID = IE (tam giác IDE cân tại I) => I thuộc đường trung trực của DE
AD = AE (tam giác ADE cân tại A) => A thuộc đường trung trực của DE
=> AI là đường trung trực của DE
mà AM là đường trung trực của DE (chứng minh trên)
=> A, M, I thẳng hàng
câu a bn hơi nhầm thì phải phải là abd chứ có phải abc đâu

a,xét tam giác ABD và tam giác ACE có:
AB=AC(gt)
vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)
BD=CE(gt)
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)
b,xét 2 tam giác vuông ADH và AEK có:
AD=AE(theo câu a)
\(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)
\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)
\(\Rightarrow\)DH=EK
c,xét tam giác AHO và tam giác AKO có:
AH=AK(theo câu b)
AO cạnh chung
\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)
\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)
\(\Rightarrow\)AO là phận giác của góc BAC
d,câu này dễ nên bn có thể tự làm tiếp nhé

P/S: mk ko bt vẽ hình ở trên máy tính,sr nha
a) Ta có : ABCˆ=ACBˆABC^=ACB^ (tam giác ABC cân tại A)
Lại có : KCEˆ=ACBˆKCE^=ACB^ (đối đỉnh)
Suy ra : ABCˆ=KCEˆ(=ACBˆ)ABC^=KCE^(=ACB^)
Xét ΔDBH,ΔECKΔDBH,ΔECK có :
DBHˆ=ECKˆDBH^=ECK^ (do ABCˆ=KCEˆABC^=KCE^)
BD=CE(gt)BD=CE(gt)
DHBˆ=EKCˆ(=90o)DHB^=EKC^(=90o)
=> ΔDBH=ΔECKΔDBH=ΔECK (cạnh huyền -góc nhọn)
=> DH = EK (2 cạnh tương ứng)
b) Xét ΔDHI,ΔEKIΔDHI,ΔEKI có :
DHIˆ=EKIˆ(=90o)DHI^=EKI^(=90o)
DH=EK(cmt)DH=EK(cmt)
DIHˆ=EIKˆDIH^=EIK^ (đối đỉnh)
=> ΔDHI=ΔEKI(g.c.g)ΔDHI=ΔEKI(g.c.g)
=> DI = EI (2 cạnh tương ứng)
=> I là trung điểm của DE
=> đpcm.

P/s : Hình bạn tự vẽ giúp mình nha. Cảm ơn bạn nhiều !
a) Xét 🔺ABD và 🔺ACE có :
AB = AC ( 🔺ABC cân tại A )
^ABC = ^ACB (🔺ABC cân tại A )
BD = CE ( gt )
Suy ra 🔺ABD = 🔺ACE ( c.g.c )
b) Xét 🔺HBD và 🔺KCE có :
^BHD = ^CKE = 90 độ
BD = BE ( gt )
^ABC = ^ACB ( 🔺ABC cân tại A )
Suy ra 🔺HBD = 🔺KCE ( ch - gn )
=> DH = EK ( 2 cạnh tương ứng )
c) Xét 🔺ABM và 🔺ACM có :
AB = AC ( 🔺ABC cân tại A )
MB = MC ( vì M là trung điểm của BC )
AM là cạnh chung
Suy ra 🔺ABM = 🔺ACM ( c.c.c )
=> ^BAM = ^CAM ( 2 góc tương ứng )
hay AM là tia phân giác của ^BAC (1)
mà M nằm giữa A và O ( hình vẽ )
=> AO cũng là tia phân giác của ^BAC (2)
d) Từ (1) và (2) => A, M, O thẳng hàng