Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét \(\Delta\)AHC và \(\Delta\)DHC:
AHC=DHC=90
AC=DC
HC chung
=>\(\Delta\)AHC=\(\Delta\)DHC(c-g-c)
b)Áp dụng Định lý Pythagoras cho tam giác vuông ABC, ta được:
AB2+AC2=BC2=>AC2=BC2-AB2=102-62=64=>AC=8cm
c)Xét \(\Delta\)AHB và \(\Delta\)DHE:
AHB=DHE=90
BH=EH
AH=DH
=>\(\Delta\)AHB=\(\Delta\)DHE(c-g-c)
d)\(\Delta\)AHE vuông tại H=>AE>HE
\(\Delta\)DHE vuông tại H=>CD>HC
Suy ra:
AE+CD>HE+HC=BH+HC=BC
A B C H
a/ Xét tam giác AHB và tam giác AHC
Góc AHB=AHC=90 độ
AB=AC(tam giác ABC cân tại A)
Góc B=C (tam giác ABC cân tại A)
=> Tam giác ABH=ACH(ch-gn)
mk nha
a: Xét ΔAHB và ΔAHC có
AH chung
AB=AC
HB=HC
Do đó: ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
a.Xét tam giác vuông AHB và tam giác vuông AHC, có:
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
Vậy tam giác vuông AHB = tam giác vuông AHC ( cạnh huyền. góc nhọn)
=> HB = HC ( 2 cạnh tương ứng )
b.Xét tam giác vuông ADH và tam giác vuông AEH, có:
AH: cạnh chung
góc DAH = góc EAH ( AH là đường cao cũng là đường phân giác )
Vậy tam giác vuông ADH = tam giác vuông AEH
=> HD = HE ( 2 cạnh tương ứng )
=> tam giác HDE cân tại H
c.Xét tam giác vuông AEC và tam giác vuông ADB, có:
AB = AC ( ABC cân )
góc A: chung
Vậy tam giác vuông AEC = tam giác vuông ADB ( cạnh huyền.góc nhọn)
=> AD = AE ( 2 cạnh tương ứng )
=> tam giác ADE cân tại A
=> AH vuông với DE, mà AH cũng vuông với BC
=> DE//BC ( DE ko phải DC nha bạn )
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó:ΔAHB=ΔAHC
Suy ra: HB=HC
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
c: Ta có: ΔADH=ΔAEH
nên AD=AE
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Hình vẽ này chưa đủ dữ liệu em nhé. Cần phải thêm các yếu tố ví dụ cặp cạnh nào đó hoặc cặp góc nào đó bằng nhau.