A B C D E

cho tam giác ABC vuông tại A có góc B=19 độ

Trên đ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

A B E D C F

Lấy điểm F sao cho ^BCF = 90o  => ^ACF = ^ABC = 19o => ^DCA = ^FCA = 19o 

Có ^ECF + ^ECB  = ^BCF = 90o 

^CFE + ^EBC = 180o - ^BCF = 90o 

Mà ^ECB = ^EBC = 19 (1)

=> ^ECF = ^EFC => \(\Delta\)FEC cân => FE = EC 

(1) => => \(\Delta\)EBC cân => EB = EC 

=> FE = EB 

=> FE = \(\frac{1}{2}\)BF 

=> AE + AF = \(\frac{1}{2}\)( BD + DF ) 

Mặt khác \(\Delta\)DCF có: ^DCA = ^ACF (= 19o) do đó CA phân giác ^DCF  mà CA là đường cao \(\Delta\)DCF

=> \(\Delta\)DCF cân  tại C => A là trung điểm DF => DF = 2AF

=> AE + AF = \(\frac{1}{2}\)BD + \(\frac{1}{2}\)DF 

=> AE + AF = \(\frac{1}{2}\)BD + AF 

=> AE = \(\frac{1}{2}\)BD 

=> BD / AE = 2

19 tháng 4 2015

 1,a, cm: tam giác BEC và tg BDC(c.g.c0

b, cm : tg ABE= tg ACD(c,g.c)

c, cm: BK=KC ( cm: tg BKD= tg CED)

25 tháng 3 2017

CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM

a, Tính BC

b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC

c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC

29 tháng 7 2017

ahihi Dồ     ahihi đồ chó

30 tháng 7 2017

bn có bị j ko z

6 tháng 7 2018

Câu d nè bn.

d, ✳️ Xét ∆ ABC vuông tại A có góc ACB= 30° (gt)

➡️Góc ABC = 60°

mà ∆ BFC cân tại B (BI là đg phân giác đồng thời là đg cao)

➡️∆ BFC đều

➡️BC = FC = FB

✳️ Xét ∆ ABC vuông tại A có góc ACB = 30° (gt)

➡️AB = 1/2 BC (t/c)

➡️BC = 2 AB

Theo Pitago ta có: 

BC 2 = AB 2 + AC 2

➡️(2 AB) 2 = AB 2 + AC 2 

➡️4 AB 2 - AB 2 = AC 2

➡️3 AB 2 = AC 2

➡️3 AB 2 = 25

➡️AB 2 = 25 ÷ 3 = 25/3

Vậy ta có: BC 2 = 25/3 + 25 = 100/3

➡️BC = √100/3

mà BC = FC (cmt)

➡️FC = √100/3

Vậy đó, hok tốt nhé

28 tháng 6 2020

A B C H D E 1 2 1 2 3 4

A) XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(BC^2=3^2+4^2\)

          \(BC^2=9+16\)

          \(BC^2=25\)

\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta ABC\) CÓ

\(BC>AC>AB\left(5>4>3\right)\)

\(\Rightarrow\widehat{A}>\widehat{B}>\widehat{C}\)QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN

B) XÉT \(\Delta BAH\)\(\Delta BDH\)

BH LÀ CẠNH CHUNG

\(\widehat{H_2}=\widehat{H_1}=90^o\)

\(AH=DH\left(GT\right)\)

=>\(\Delta BAH\)=\(\Delta BDH\)(C-G-C)

=> AB = BD( ĐPCM)

C) XÉT \(\Delta BAH\)\(\Delta EDH\)

  \(BH=EH\left(GT\right)\)

\(\widehat{H_2}=\widehat{H_4}\left(Đ^2\right)\)

\(AH=DH\left(GT\right)\)

=>\(\Delta BAH\)=\(\Delta EDH\)(C-G-C)

=>\(\widehat{A_1}=\widehat{D_2}\)HAI GÓC TƯƠNG ỨNG 

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

=> DE//AB

22 tháng 11 2017

A B C E D I

a) Xét tam giác ABD và EBD có:

BA = BE (gt)

\(\widehat{ABD}=\widehat{EBD}\) (Do BD là tia phân giác góc B)

BD chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

\(\Rightarrow AD=ED\) (Hai cạnh tương ứng)

b)  Do \(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)

Xét tam giác vuông ABC ta có \(\widehat{ABC}=90^o-\widehat{ACB}\)

Xét tam giác vuông DEC ta có \(\widehat{EDC}=90^o-\widehat{ACB}\)

Vậy nên \(\widehat{EDC}=\widehat{ABC}\)

c) Gọi giao điểm của AE và BD là I.

Xét tam giác ABI và tam giác EBI có:

AB = EB (gt)

\(\widehat{ABI}=\widehat{EBI}\)

BD chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c-g-c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{EIB}\) (Hai góc tương ứng)

Mà chúng lại ở vị trí kề bù nên \(\widehat{AIB}=\widehat{EIB}=90^o\)

Vậy nên \(AE\perp BD\)