Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC
Câu d nè bn.
d, ✳️ Xét ∆ ABC vuông tại A có góc ACB= 30° (gt)
➡️Góc ABC = 60°
mà ∆ BFC cân tại B (BI là đg phân giác đồng thời là đg cao)
➡️∆ BFC đều
➡️BC = FC = FB
✳️ Xét ∆ ABC vuông tại A có góc ACB = 30° (gt)
➡️AB = 1/2 BC (t/c)
➡️BC = 2 AB
Theo Pitago ta có:
BC 2 = AB 2 + AC 2
➡️(2 AB) 2 = AB 2 + AC 2
➡️4 AB 2 - AB 2 = AC 2
➡️3 AB 2 = AC 2
➡️3 AB 2 = 25
➡️AB 2 = 25 ÷ 3 = 25/3
Vậy ta có: BC 2 = 25/3 + 25 = 100/3
➡️BC = √100/3
mà BC = FC (cmt)
➡️FC = √100/3
Vậy đó, hok tốt nhé
A B C H D E 1 2 1 2 3 4
A) XÉT \(\Delta ABC\)VUÔNG TẠI A
\(BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY \(BC^2=3^2+4^2\)
\(BC^2=9+16\)
\(BC^2=25\)
\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta ABC\) CÓ
\(BC>AC>AB\left(5>4>3\right)\)
\(\Rightarrow\widehat{A}>\widehat{B}>\widehat{C}\)QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN
B) XÉT \(\Delta BAH\)VÀ\(\Delta BDH\)CÓ
BH LÀ CẠNH CHUNG
\(\widehat{H_2}=\widehat{H_1}=90^o\)
\(AH=DH\left(GT\right)\)
=>\(\Delta BAH\)=\(\Delta BDH\)(C-G-C)
=> AB = BD( ĐPCM)
C) XÉT \(\Delta BAH\)VÀ\(\Delta EDH\)CÓ
\(BH=EH\left(GT\right)\)
\(\widehat{H_2}=\widehat{H_4}\left(Đ^2\right)\)
\(AH=DH\left(GT\right)\)
=>\(\Delta BAH\)=\(\Delta EDH\)(C-G-C)
=>\(\widehat{A_1}=\widehat{D_2}\)HAI GÓC TƯƠNG ỨNG
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> DE//AB
A B C E D I
a) Xét tam giác ABD và EBD có:
BA = BE (gt)
\(\widehat{ABD}=\widehat{EBD}\) (Do BD là tia phân giác góc B)
BD chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
\(\Rightarrow AD=ED\) (Hai cạnh tương ứng)
b) Do \(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)
Xét tam giác vuông ABC ta có \(\widehat{ABC}=90^o-\widehat{ACB}\)
Xét tam giác vuông DEC ta có \(\widehat{EDC}=90^o-\widehat{ACB}\)
Vậy nên \(\widehat{EDC}=\widehat{ABC}\)
c) Gọi giao điểm của AE và BD là I.
Xét tam giác ABI và tam giác EBI có:
AB = EB (gt)
\(\widehat{ABI}=\widehat{EBI}\)
BD chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c-g-c\right)\)
\(\Rightarrow\widehat{AIB}=\widehat{EIB}\) (Hai góc tương ứng)
Mà chúng lại ở vị trí kề bù nên \(\widehat{AIB}=\widehat{EIB}=90^o\)
Vậy nên \(AE\perp BD\)
A B E D C F
Lấy điểm F sao cho ^BCF = 90o => ^ACF = ^ABC = 19o => ^DCA = ^FCA = 19o
Có ^ECF + ^ECB = ^BCF = 90o
^CFE + ^EBC = 180o - ^BCF = 90o
Mà ^ECB = ^EBC = 19o (1)
=> ^ECF = ^EFC => \(\Delta\)FEC cân => FE = EC
(1) => => \(\Delta\)EBC cân => EB = EC
=> FE = EB
=> FE = \(\frac{1}{2}\)BF
=> AE + AF = \(\frac{1}{2}\)( BD + DF )
Mặt khác \(\Delta\)DCF có: ^DCA = ^ACF (= 19o) do đó CA phân giác ^DCF mà CA là đường cao \(\Delta\)DCF
=> \(\Delta\)DCF cân tại C => A là trung điểm DF => DF = 2AF
=> AE + AF = \(\frac{1}{2}\)BD + \(\frac{1}{2}\)DF
=> AE + AF = \(\frac{1}{2}\)BD + AF
=> AE = \(\frac{1}{2}\)BD
=> BD / AE = 2